Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2806: 139-151, 2024.
Article in English | MEDLINE | ID: mdl-38676801

ABSTRACT

Cholangiocarcinoma (CCA) poses a substantial clinical hurdle as it is often detected at advanced metastatic stages with limited therapeutic options. To enhance our understanding of advanced CCA, it is imperative to establish preclinical models that faithfully recapitulate the disease's characteristics. Patient-derived xenograft (PDX) models have emerged as a valuable approach in cancer research, offering an avenue to reproduce and study the genomic, histologic, and molecular features of the original human tumors. By faithfully preserving the heterogeneity, microenvironmental interactions, and drug responses observed in human tumors, PDX models serve as highly relevant and predictive preclinical tools. Here, we present a comprehensive protocol that outlines the step-by-step process of generating and maintaining PDX models using biopsy samples from patients with advanced metastatic CCA. The protocol encompasses crucial aspects such as tissue processing, xenograft transplantation, and subsequent monitoring of the PDX models. By employing this protocol, we aim to establish a robust collection of PDX models that accurately reflect the genomic landscape, histologic diversity, and therapeutic responses observed in advanced CCA, thereby enabling improved translational research, drug development, and personalized treatment strategies for patients facing this challenging disease.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Xenograft Model Antitumor Assays , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Humans , Animals , Mice , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Xenograft Model Antitumor Assays/methods , Disease Models, Animal
2.
FEBS J ; 291(11): 2423-2448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38451841

ABSTRACT

Oxidation of histone H3 at lysine 4 (H3K4ox) is catalyzed by lysyl oxidase homolog 2 (LOXL2). This histone modification is enriched in heterochromatin in triple-negative breast cancer (TNBC) cells and has been linked to the maintenance of compacted chromatin. However, the molecular mechanism underlying this maintenance is still unknown. Here, we show that LOXL2 interacts with RuvB-Like 1 (RUVBL1), RuvB-Like 2 (RUVBL2), Actin-like protein 6A (ACTL6A), and DNA methyltransferase 1associated protein 1 (DMAP1), a complex involved in the incorporation of the histone variant H2A.Z. Our experiments indicate that this interaction and the active form of RUVBL2 are required to maintain LOXL2-dependent chromatin compaction. Genome-wide experiments showed that H2A.Z, RUVBL2, and H3K4ox colocalize in heterochromatin regions. In the absence of LOXL2 or RUVBL2, global levels of the heterochromatin histone mark H3K9me3 were strongly reduced, and the ATAC-seq signal in the H3K9me3 regions was increased. Finally, we observed that the interplay between these series of events is required to maintain H3K4ox-enriched heterochromatin regions, which in turn is key for maintaining the oncogenic properties of the TNBC cell line tested (MDA-MB-231).


Subject(s)
Amino Acid Oxidoreductases , Heterochromatin , Histones , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Humans , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Histones/metabolism , Histones/genetics , Female , Heterochromatin/metabolism , Heterochromatin/genetics , Cell Line, Tumor , Chromatin/metabolism , Chromatin/genetics , Gene Expression Regulation, Neoplastic , DNA Helicases/genetics , DNA Helicases/metabolism
3.
EMBO Mol Med ; 15(12): e18459, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37937685

ABSTRACT

Triple-negative breast cancer (TNBC) often develops resistance to single-agent treatment, which can be circumvented using targeted combinatorial approaches. Here, we demonstrate that the simultaneous inhibition of LOXL2 and BRD4 synergistically limits TNBC proliferation in vitro and in vivo. Mechanistically, LOXL2 interacts in the nucleus with the short isoform of BRD4 (BRD4S), MED1, and the cell cycle transcriptional regulator B-MyB. These interactions sustain the formation of BRD4 and MED1 nuclear transcriptional foci and control cell cycle progression at the gene expression level. The pharmacological co-inhibition of LOXL2 and BRD4 reduces BRD4 nuclear foci, BRD4-MED1 colocalization, and the transcription of cell cycle genes, thus suppressing TNBC cell proliferation. Targeting the interaction between BRD4S and LOXL2 could be a starting point for the development of new anticancer strategies for the treatment of TNBC.


Subject(s)
Transcription Factors , Triple Negative Breast Neoplasms , Humans , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Bromodomain Containing Proteins , Cell Cycle , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Mediator Complex Subunit 1/genetics , Mediator Complex Subunit 1/metabolism , Nuclear Proteins/genetics , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Animals
4.
Br J Cancer ; 129(12): 1903-1914, 2023 12.
Article in English | MEDLINE | ID: mdl-37875732

ABSTRACT

BACKGROUND: Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer, arising from resistance to androgen-deprivation therapies. However, the molecular mechanisms associated with NEPC development and invasiveness are still poorly understood. Here we investigated the expression and functional significance of Fascin-1 (FSCN1), a pro-metastasis actin-bundling protein associated with poor prognosis of several cancers, in neuroendocrine differentiation of prostate cancer. METHODS: Differential expression analyses using Genome Expression Omnibus (GEO) database, clinical samples and cell lines were performed. Androgen or antagonist's cellular treatments and knockdown experiments were used to detect changes in cell morphology, molecular markers, migration properties and in vivo tumour growth. Chromatin immunoprecipitation-sequencing (ChIP-Seq) data and ChIP assays were analysed to decipher androgen receptor (AR) binding. RESULTS: We demonstrated that FSCN1 is upregulated during neuroendocrine differentiation of prostate cancer in vitro, leading to phenotypic changes and NEPC marker expression. In human prostate cancer samples, FSCN1 expression is restricted to NEPC tumours. We showed that the androgen-activated AR downregulates FSCN1 expression and works as a transcriptional repressor to directly suppress FSCN1 expression. AR antagonists alleviate this repression. In addition, FSCN1 silencing further impairs in vivo tumour growth. CONCLUSION: Collectively, our findings identify FSCN1 as an AR-repressed gene. Particularly, it is involved in NEPC aggressiveness. Our results provide the rationale for the future clinical development of FSCN1 inhibitors in NEPC patients.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Humans , Male , Androgen Antagonists/therapeutic use , Androgens , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology
5.
Cell Death Dis ; 14(3): 201, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932059

ABSTRACT

Multiciliated cells (MCCs) project dozens to hundreds of motile cilia from their apical surface to promote the movement of fluids or gametes in the mammalian brain, airway or reproductive organs. Differentiation of MCCs requires the sequential action of the Geminin family transcriptional activators, GEMC1 and MCIDAS, that both interact with E2F4/5-DP1. How these factors activate transcription and the extent to which they play redundant functions remains poorly understood. Here, we demonstrate that the transcriptional targets and proximal proteomes of GEMC1 and MCIDAS are highly similar. However, we identified distinct interactions with SWI/SNF subcomplexes; GEMC1 interacts primarily with the ARID1A containing BAF complex while MCIDAS interacts primarily with BRD9 containing ncBAF complexes. Treatment with a BRD9 inhibitor impaired MCIDAS-mediated activation of several target genes and compromised the MCC differentiation program in multiple cell based models. Our data suggest that the differential engagement of distinct SWI/SNF subcomplexes by GEMC1 and MCIDAS is required for MCC-specific transcriptional regulation and mediated by their distinct C-terminal domains.


Subject(s)
Gene Expression Regulation , Nuclear Proteins , Animals , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Cell Differentiation/genetics , Mammals
6.
Clin Cancer Res ; 29(2): 432-445, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36374558

ABSTRACT

PURPOSE: Cholangiocarcinoma (CCA) is usually diagnosed at advanced stages, with limited therapeutic options. Preclinical models focused on unresectable metastatic CCA are necessary to develop rational treatments. Pathogenic mutations in IDH1/2, ARID1A/B, BAP1, and BRCA1/2 have been identified in 30%-50% of patients with CCA. Several types of tumor cells harboring these mutations exhibit homologous recombination deficiency (HRD) phenotype with enhanced sensitivity to PARP inhibitors (PARPi). However, PARPi treatment has not yet been tested for effectiveness in patient-derived models of advanced CCA. EXPERIMENTAL DESIGN: We have established a collection of patient-derived xenografts from patients with unresectable metastatic CCA (CCA_PDX). The CCA_PDXs were characterized at both histopathologic and genomic levels. We optimized a protocol to generate CCA tumoroids from CCA_PDXs. We tested the effects of PARPis in both CCA tumoroids and CCA_PDXs. Finally, we used the RAD51 assay to evaluate the HRD status of CCA tissues. RESULTS: This collection of CCA_PDXs recapitulates the histopathologic and molecular features of their original tumors. PARPi treatments inhibited the growth of CCA tumoroids and CCA_PDXs with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1. In line with these findings, only CCA_PDX and CCA patient biopsy samples with mutations of BRCA2 showed RAD51 scores compatible with HRD. CONCLUSIONS: Our results suggest that patients with advanced CCA with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1, are likely to benefit from PARPi therapy. This collection of CCA_PDXs provides new opportunities for evaluating drug response and prioritizing clinical trials.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Drug Evaluation, Preclinical , Heterografts , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Bile Ducts, Intrahepatic , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL