Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Sci Adv ; 10(25): eadk2299, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38896614

ABSTRACT

Noise-induced hearing loss (NIHL) is a common sensorineural hearing impairment that lacks U.S. Food and Drug Administration-approved drugs. To fill the gap in effective screening models, we used an in silico transcriptome-based drug screening approach, identifying 22 biological pathways and 64 potential small molecule treatments for NIHL. Two of these, afatinib and zorifertinib [epidermal growth factor receptor (EGFR) inhibitors], showed efficacy in zebrafish and mouse models. Further tests with EGFR knockout mice and EGF-morpholino zebrafish confirmed their protective role against NIHL. Molecular studies in mice highlighted EGFR's crucial involvement in NIHL and the protective effect of zorifertinib. When given orally, zorifertinib was found in the perilymph with favorable pharmacokinetics. In addition, zorifertinib combined with AZD5438 (a cyclin-dependent kinase 2 inhibitor) synergistically prevented NIHL in zebrafish. Our results underscore the potential for in silico transcriptome-based drug screening in diseases lacking efficient models and suggest EGFR inhibitors as potential treatments for NIHL, meriting clinical trials.


Subject(s)
ErbB Receptors , Hearing Loss, Noise-Induced , Transcriptome , Zebrafish , Animals , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mice , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/genetics , Disease Models, Animal , Computer Simulation , Protein Kinase Inhibitors/pharmacology , Humans , Drug Evaluation, Preclinical , Mice, Knockout , Gene Expression Profiling
2.
J Neurosci ; 44(18)2024 May 01.
Article in English | MEDLINE | ID: mdl-38548338

ABSTRACT

Hearing loss is a major disability in everyday life and therapeutic interventions to protect hearing would benefit a large portion of the world population. Here we found that mice devoid of the protein kinase suppressor of RAS 1 (KSR1) in their tissues (germline KO mice) exhibit resistance to both cisplatin- and noise-induced permanent hearing loss compared with their wild-type KSR1 littermates. KSR1 is a scaffold protein that brings in proximity the mitogen-activated protein kinase (MAPK) proteins BRAF, MEK1/2 and ERK1/2 and assists in their activation through a phosphorylation cascade induced by both cisplatin and noise insults in the cochlear cells. KSR1, BRAF, MEK1/2, and ERK1/2 are all ubiquitously expressed in the cochlea. Deleting the KSR1 protein tempered down the MAPK phosphorylation cascade in the cochlear cells following both cisplatin and noise insults and conferred hearing protection of up to 30 dB SPL in three tested frequencies in male and female mice. Treatment with dabrafenib, an FDA-approved oral BRAF inhibitor, protected male and female KSR1 wild-type mice from both cisplatin- and noise-induced hearing loss. Dabrafenib treatment did not enhance the protection of KO KSR1 mice, providing evidence dabrafenib works primarily through the MAPK pathway. Thus, either elimination of the KSR1 gene expression or drug inhibition of the MAPK cellular pathway in mice resulted in profound protection from both cisplatin- and noise-induced hearing loss. Inhibition of the MAPK pathway, a cellular pathway that responds to damage in the cochlear cells, can prove a valuable strategy to protect and treat hearing loss.


Subject(s)
Cisplatin , Hearing Loss, Noise-Induced , MAP Kinase Signaling System , Mice, Knockout , Protein Kinases , Animals , Cisplatin/toxicity , Mice , Female , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/genetics , Male , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Protein Kinases/metabolism , Protein Kinases/genetics , Mice, Inbred C57BL
3.
Cancer Res Commun ; 4(3): 765-784, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38421883

ABSTRACT

The effect of targeted therapeutics on anticancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Because ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T-cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5, Mafg, and Zbtb7a. This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development toward monocytic lineage cells. In vivo, we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveal transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off-target effects of dabrafenib. SIGNIFICANCE: An important, but poorly understood, aspect of targeted therapeutics for cancer is the effect on antitumor immune responses. This article shows that off-target effects of dabrafenib activating the kinase GCN2 impact MDSC development and function reducing PMN-MDSCs in vitro and in vivo. This has important implications for our understanding of how this BRAF inhibitor impacts tumor growth and provides novel therapeutic target and combination possibilities.


Subject(s)
Imidazoles , Myeloid-Derived Suppressor Cells , Oximes , Animals , Mice , Cell Line, Tumor , Proto-Oncogene Proteins B-raf/metabolism , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism
4.
Clin Cancer Res ; 30(6): 1200-1207, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38180733

ABSTRACT

PURPOSE: To develop an immune-based gene expression risk score to identify patients with cervical cancer at increased risk of distant metastases (DM). EXPERIMENTAL DESIGN: Tumor biopsies were obtained from 81 patients prior to chemoradiotherapy. Whole-transcriptome RNA sequencing was performed (Illumina NextSeq500). Beginning with 4,723 immune-related genes, a 55-gene risk score for DM was derived using Cox modeling and principal component analysis. It was validated in independent cohorts of 274 patients treated at the Norwegian Radium Hospital (NRH) and 206 patients from The Cancer Genome Atlas (TCGA). RESULTS: The risk score was predictive of DM (HR, 2.7; P < 0.0001) and lower cause-specific survival (CSS) by univariate analysis (HR, 2.0; P = 0.0003) and multivariate analysis adjusted for clinical factors (DM HR, 3.0; P < 0.0001; CSS HR, 2.2; P = 0.0004). The risk score predicted DM (HR, 1.4; P = 0.05) and CSS (HR, 1.48; P = 0.013) in the NRH cohort and CSS (HR, 1.4; P = 0.03) in TCGA cohort. Higher risk scores were associated with lower CIBERSORT estimates of tumor-infiltrating immune cells, including CD8 T cells and M1 and M2 macrophages (all P < 0.001). Higher risk scores were associated with lower expression (all P < 0.001) of important chemokines (CXCL12, CXCR4), IFN-regulated genes (IRF1, STAT1, IDO1), and immune checkpoint regulators (PD-1, PD-L1, CTLA-4). CONCLUSIONS: The immune metastatic risk score addresses important challenges in the treatment of cervical cancer-identifying patients at high risk of DM after radiotherapy. The findings of this study indicate that high tumor mutational burden and a "cold," immune-excluded tumor microenvironment influence distant metastatic recurrence. Further validation of the risk score is needed.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/radiotherapy , Risk Factors , CD8-Positive T-Lymphocytes , Genetic Risk Score , Gene Expression , Tumor Microenvironment/genetics
5.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014104

ABSTRACT

Hearing loss is a major disability in everyday life and therapeutic interventions to protect hearing would benefit a large portion of the world population. Here we found that mice devoid of the protein kinase suppressor of RAS 1 (KSR1) in their tissues (germline KO mice) exhibit resistance to both cisplatin- and noise-induced permanent hearing loss compared to their wild-type KSR1 littermates. KSR1 is expressed in the cochlea and is a scaffold protein that brings in proximity the mitogen-activated protein kinase (MAPK) proteins BRAF, MEK and ERK and assists in their activation through a phosphorylation cascade induced by both cisplatin and noise insults in the cochlear cells. Deleting the KSR1 protein tempered down the MAPK phosphorylation cascade in the cochlear cells following both cisplatin and noise insults and conferred hearing protection of up to 30 dB SPL in three tested frequencies in mice. Treatment with dabrafenib, an FDA-approved oral BRAF inhibitor, downregulated the MAPK kinase cascade and protected the KSR1 wild-type mice from both cisplatin- and noise-induced hearing loss. Dabrafenib treatment did not enhance the protection of KO KSR1 mice, as excepted, providing evidence dabrafenib works primarily through the MAPK pathway. Thus, either elimination of the KSR1 gene expression or drug inhibition of the MAPK cellular pathway in mice resulted in profound protection from both cisplatin- and noise-induce hearing loss. Inhibition of the MAPK pathway, a cellular pathway that responds to damage in the cochlear cells, can prove a valuable strategy to protect and treat hearing loss.

6.
bioRxiv ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37645997

ABSTRACT

The effect of targeted therapeutics on anti-cancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Since ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5 , Mafg , and Zbtb7a . This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development towards monocytic lineage cells. In vivo , we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveals transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off target effects of dabrafenib.

7.
bioRxiv ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333346

ABSTRACT

Noise-Induced Hearing Loss (NIHL) represents a widespread disease for which no therapeutics have been approved by the Food and Drug Administration (FDA). Addressing the conspicuous void of efficacious in vitro or animal models for high throughput pharmacological screening, we utilized an in silico transcriptome-oriented drug screening strategy, unveiling 22 biological pathways and 64 promising small molecule candidates for NIHL protection. Afatinib and zorifertinib, both inhibitors of the Epidermal Growth Factor Receptor (EGFR), were validated for their protective efficacy against NIHL in experimental zebrafish and murine models. This protective effect was further confirmed with EGFR conditional knockout mice and EGF knockdown zebrafish, both demonstrating protection against NIHL. Molecular analysis using Western blot and kinome signaling arrays on adult mouse cochlear lysates unveiled the intricate involvement of several signaling pathways, with particular emphasis on EGFR and its downstream pathways being modulated by noise exposure and Zorifertinib treatment. Administered orally, Zorifertinib was successfully detected in the perilymph fluid of the inner ear in mice with favorable pharmacokinetic attributes. Zorifertinib, in conjunction with AZD5438 - a potent inhibitor of cyclin dependent kinase 2 - produced synergistic protection against NIHL in the zebrafish model. Collectively, our findings underscore the potential application of in silico transcriptome-based drug screening for diseases bereft of efficient screening models and posit EGFR inhibitors as promising therapeutic agents warranting clinical exploration for combatting NIHL. Highlights: In silico transcriptome-based drug screens identify pathways and drugs against NIHL.EGFR signaling is activated by noise but reduced by zorifertinib in mouse cochleae.Afatinib, zorifertinib and EGFR knockout protect against NIHL in mice and zebrafish.Orally delivered zorifertinib has inner ear PK and synergizes with a CDK2 inhibitor.

8.
Immunity ; 55(12): 2369-2385.e10, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36370712

ABSTRACT

Type I and II interferons (IFNs) stimulate pro-inflammatory programs that are critical for immune activation, but also induce immune-suppressive feedback circuits that impede control of cancer growth. Here, we sought to determine how these opposing programs are differentially induced. We demonstrated that the transcription factor interferon regulatory factor 2 (IRF2) was expressed by many immune cells in the tumor in response to sustained IFN signaling. CD8+ T cell-specific deletion of IRF2 prevented acquisition of the T cell exhaustion program within the tumor and instead enabled sustained effector functions that promoted long-term tumor control and increased responsiveness to immune checkpoint and adoptive cell therapies. The long-term tumor control by IRF2-deficient CD8+ T cells required continuous integration of both IFN-I and IFN-II signals. Thus, IRF2 is a foundational feedback molecule that redirects IFN signals to suppress T cell responses and represents a potential target to enhance cancer control.


Subject(s)
Interferon Type I , Neoplasms , Humans , Interferon Regulatory Factor-2/genetics , CD8-Positive T-Lymphocytes , Transcription Factors , T-Cell Exhaustion , Neoplasms/pathology
9.
Hear Res ; 426: 108597, 2022 12.
Article in English | MEDLINE | ID: mdl-35963812

ABSTRACT

OBJECTIVES: The objectives of this study were to assess the effects of cochlear implant (CI) biomaterials on the function of macrophages and fibroblasts, two key mediators of the foreign body response (FBR) and to determine how these materials influence fibrous tissue growth and new bone formation within the cochlea. METHODS: Macrophages and fibroblasts were cultured on polydimethylsiloxane (PDMS) and platinum substrates and human CI electrodes in vitro. Cell count, cell proliferation, cytokine production, and cell adhesion were measured. CI electrodes were implanted into murine cochleae for three weeks without electrical stimulation. Implanted cochleae were harvested for 3D X-ray microscopy with the CI left in-situ. The location of new bone growth within the scala tympani (ST) with reference to different portions of the implant (PDMS vs platinum) was quantified. RESULTS: Cell counts of macrophages and fibroblasts were significantly higher on platinum substrates and platinum contacts of CI electrodes. Fibroblast proliferation was greater on platinum relative to PDMS, and cells grown on platinum formed more/larger focal adhesions. 3D X-ray microscopy showed neo-ossification in the peri­implant areas of the ST. Volumetric quantification of neo-ossification showed a trend toward greater bone formation adjacent to the platinum electrodes compared to areas opposite or away from the platinum electrode bearing surfaces. CONCLUSIONS: Fibrotic reactions are biomaterial specific, as demonstrated by the differences in cell adhesion, proliferation, and fibrosis on platinum and PDMS. The inflammatory reaction to platinum contacts on CI electrodes likely contributes to fibrosis to a greater degree than PDMS, and platinum contacts may influence the deposition of new bone, as demonstrated in the in vivo data. This information can potentially be used to influence the design of future generations of neural prostheses.


Subject(s)
Cochlear Implants , Foreign Bodies , Humans , Animals , Mice , Platinum , Cochlea , Fibrosis
10.
Nat Immunol ; 23(8): 1273-1283, 2022 08.
Article in English | MEDLINE | ID: mdl-35835962

ABSTRACT

Type I interferons (IFN-Is) are central regulators of anti-tumor immunity and responses to immunotherapy, but they also drive the feedback inhibition underlying therapeutic resistance. In the present study, we developed a mass cytometry approach to quantify IFN-I-stimulated protein expression across immune cells and used multi-omics to uncover pre-therapy cellular states encoding responsiveness to inflammation. Analyzing peripheral blood cells from multiple cancer types revealed that differential responsiveness to IFN-Is before anti-programmed cell death protein 1 (PD1) treatment was highly predictive of long-term survival after therapy. Unexpectedly, IFN-I hyporesponsiveness efficiently predicted long-term survival, whereas high responsiveness to IFN-I was strongly associated with treatment failure and diminished survival time. Peripheral IFN-I responsive states were not associated with tumor inflammation, identifying a disconnect between systemic immune potential and 'cold' or 'hot' tumor states. Mechanistically, IFN-I responsiveness was epigenetically imprinted before therapy, poising cells for differential inflammatory responses and dysfunctional T cell effector programs. Thus, we identify physiological cell states with clinical importance that can predict success and long-term survival of PD1-blocking immunotherapy.


Subject(s)
Interferon Type I , Humans , Immunotherapy , Inflammation , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL