Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Exp Parasitol ; 251: 108574, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37353138

ABSTRACT

Per-ARNT-Sim (PAS) domains constitute a family of domains present in a wide variety of prokaryotic and eukaryotic organisms. They form part of the structure of various proteins involved in diverse cellular processes. Regulation of enzymatic activity and adaptation to environmental conditions, by binding small ligands, are the main functions attributed to PAS-containing proteins. Recently, genes for a diverse set of proteins with a PAS domain were identified in the genomes of several protists belonging to the group of kinetoplastids, however, until now few of these proteins have been characterized. In this work, we characterize a phosphoglycerate kinase containing a PAS domain present in Trypanosoma cruzi (TcPAS-PGK). This PGK isoform is an active enzyme of 58 kDa with a PAS domain located at its N-terminal end. We identified the protein's localization within glycosomes of the epimastigote form of the parasite by differential centrifugation and selective permeabilization of its membranes with digitonin, as well as in an enriched mitochondrial fraction. Heterologous expression systems were developed for the protein with the N-terminal PAS domain (PAS-PGKc) and without it (PAS-PGKt), and the substrate affinities of both forms of the protein were determined. The enzyme does not exhibit standard Michaelis-Menten kinetics. When evaluating the dependence of the specific activity of the recombinant PAS-PGK on the concentration of its substrates 3-phosphoglycerate (3PGA) and ATP, two peaks of maximal activity were found for the complete enzyme with the PAS domain and a single peak for the enzyme without the domain. Km values measured for 3PGA were 219 ± 26 and 8.8 ± 1.3 µM, and for ATP 291 ± 15 and 38 ± 2.2 µM, for the first peak of PAS-PGKc and for PAS-PGKt, respectively, whereas for the second PAS-PGKc peak values of approximately 1.1-1.2 mM were estimated for both substrates. Both recombinant proteins show inhibition by high concentrations of their substrates, ATP and 3PGA. The presence of hemin and FAD exerts a stimulatory effect on PAS-PGKc, increasing the specific activity by up to 55%. This stimulation is not observed in the absence of the PAS domain. It strongly suggests that the PAS domain has an important function in vivo in T. cruzi in the modulation of the catalytic activity of this PGK isoform. In addition, the PAS-PGK through its PAS and PGK domains could act as a sensor for intracellular conditions in the parasite to adjust its intermediary metabolism.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Phosphoglycerate Kinase/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Adenosine Triphosphate/metabolism
2.
Biomolecules ; 13(4)2023 03 26.
Article in English | MEDLINE | ID: mdl-37189347

ABSTRACT

Trypanosomiases are a group of tropical diseases that have devastating health and socio-economic effects worldwide. In humans, these diseases are caused by the pathogenic kinetoplastids Trypanosoma brucei, causing African trypanosomiasis or sleeping sickness, and Trypanosoma cruzi, causing American trypanosomiasis or Chagas disease. Currently, these diseases lack effective treatment. This is attributed to the high toxicity and limited trypanocidal activity of registered drugs, as well as resistance development and difficulties in their administration. All this has prompted the search for new compounds that can serve as the basis for the development of treatment of these diseases. Antimicrobial peptides (AMPs) are small peptides synthesized by both prokaryotes and (unicellular and multicellular) eukaryotes, where they fulfill functions related to competition strategy with other organisms and immune defense. These AMPs can bind and induce perturbation in cell membranes, leading to permeation of molecules, alteration of morphology, disruption of cellular homeostasis, and activation of cell death. These peptides have activity against various pathogenic microorganisms, including parasitic protists. Therefore, they are being considered for new therapeutic strategies to treat some parasitic diseases. In this review, we analyze AMPs as therapeutic alternatives for the treatment of trypanosomiases, emphasizing their possible application as possible candidates for the development of future natural anti-trypanosome drugs.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosomiasis, African , Trypanosomiasis , Animals , Humans , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/chemistry , Antimicrobial Peptides , Trypanosomiasis/drug therapy , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Chagas Disease/drug therapy , Peptides/pharmacology , Peptides/therapeutic use
3.
Front Cell Dev Biol ; 10: 979269, 2022.
Article in English | MEDLINE | ID: mdl-36172271

ABSTRACT

One peculiarity of protists belonging to classes Kinetoplastea and Diplonemea within the phylum Euglenozoa is compartmentalisation of most glycolytic enzymes within peroxisomes that are hence called glycosomes. This pathway is not sequestered in peroxisomes of the third Euglenozoan class, Euglenida. Previous analysis of well-studied kinetoplastids, the 'TriTryps' parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., identified within glycosomes other metabolic processes usually not present in peroxisomes. In addition, trypanosomatid peroxins, i.e. proteins involved in biogenesis of these organelles, are divergent from human and yeast orthologues. In recent years, genomes, transcriptomes and proteomes for a variety of euglenozoans have become available. Here, we track the possible evolution of glycosomes by querying these databases, as well as the genome of Naegleria gruberi, a non-euglenozoan, which belongs to the same protist supergroup Discoba. We searched for orthologues of TriTryps proteins involved in glycosomal metabolism and biogenesis. Predicted cellular location(s) of each metabolic enzyme identified was inferred from presence or absence of peroxisomal-targeting signals. Combined with a survey of relevant literature, we refine extensively our previously postulated hypothesis about glycosome evolution. The data agree glycolysis was compartmentalised in a common ancestor of the kinetoplastids and diplonemids, yet additionally indicates most other processes found in glycosomes of extant trypanosomatids, but not in peroxisomes of other eukaryotes were either sequestered in this ancestor or shortly after separation of the two lineages. In contrast, peroxin divergence is evident in all euglenozoans. Following their gain of pathway complexity, subsequent evolution of peroxisome/glycosome function is complex. We hypothesize compartmentalisation in glycosomes of glycolytic enzymes, their cofactors and subsequently other metabolic enzymes provided selective advantage to kinetoplastids and diplonemids during their evolution in changing marine environments. We contend two specific properties derived from the ancestral peroxisomes were key: existence of nonselective pores for small solutes and the possibility of high turnover by pexophagy. Critically, such pores and pexophagy are characterised in extant trypanosomatids. Increasing amenability of free-living kinetoplastids and recently isolated diplonemids to experimental study means our hypothesis and interpretation of bioinformatic data are suited to experimental interrogation.

4.
Open Biol ; 12(6): 210395, 2022 06.
Article in English | MEDLINE | ID: mdl-35702995

ABSTRACT

MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.


Subject(s)
MicroRNAs , Parasites , 3' Untranslated Regions , Animals , Gene Expression Regulation , Host-Parasite Interactions/genetics , MicroRNAs/metabolism , Parasites/genetics , Parasites/metabolism
5.
Microorganisms ; 11(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36677353

ABSTRACT

microRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression post-transcriptionally through their interaction with the 3' untranslated regions (3' UTR) of target mRNAs, affecting their stability and/or translation. Therefore, miRNAs regulate biological processes such as signal transduction, cell death, autophagy, metabolism, development, cellular proliferation, and differentiation. Dysregulated expression of microRNAs is associated with infectious diseases, where miRNAs modulate important aspects of the parasite-host interaction. Helminths are parasitic worms that cause various neglected tropical diseases affecting millions worldwide. These parasites have sophisticated mechanisms that give them a surprising immunomodulatory capacity favoring parasite persistence and establishment of infection. In this review, we analyze miRNAs in infections caused by helminths, emphasizing their role in immune regulation and its implication in diagnosis, prognosis, and the development of therapeutic strategies.

6.
Parasitol Res ; 120(4): 1421-1428, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33098461

ABSTRACT

Trypanosoma cruzi, the causative agent of Chagas' disease, belongs to the Trypanosomatidae family. The parasite undergoes multiple morphological and metabolic changes during its life cycle, in which it can use both glucose and amino acids as carbon and energy sources. The glycolytic pathway is peculiar in that its first six or seven steps are compartmentalized in glycosomes, and has a two-branched auxiliary glycosomal system functioning beyond the intermediate phosphoenolpyruvate (PEP) that is also used in the cytosol as substrate by pyruvate kinase. The pyruvate phosphate dikinase (PPDK) is the first enzyme of one branch, converting PEP, PPi, and AMP into pyruvate, Pi, and ATP. Here we present a kinetic study of PPDK from T. cruzi that reveals its hysteretic behavior. The length of the lag phase, and therefore the time for reaching higher specific activity values is affected by the concentration of the enzyme, the presence of hydrogen ions and the concentrations of the enzyme's substrates. Additionally, the formation of a more active PPDK with more complex structure is promoted by it substrates and the cation ammonium, indicating that this enzyme equilibrates between the monomeric (less active) and a more complex (more active) form depending on the medium. These results confirm the hysteretic behavior of PPDK and are suggestive for its functioning as a regulatory mechanism of this auxiliary pathway. Such a regulation could serve to distribute the glycolytic flux over the two auxiliary branches as a response to the different environments that the parasite encounters during its life cycle.


Subject(s)
Chagas Disease/parasitology , Pyruvate, Orthophosphate Dikinase/metabolism , Trypanosoma cruzi/enzymology , Adenosine Monophosphate/metabolism , Diphosphates/metabolism , Glucose/metabolism , Glycolysis , Hydrogen-Ion Concentration , Kinetics , Microbodies/enzymology , Phosphoenolpyruvate/metabolism , Pyruvate, Orthophosphate Dikinase/chemistry , Pyruvates/metabolism , Recombinant Proteins/metabolism
7.
Open Biol ; 10(11): 200302, 2020 11.
Article in English | MEDLINE | ID: mdl-33234025

ABSTRACT

Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or 'dead' enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.


Subject(s)
Phosphoglycerate Kinase/chemistry , Phosphoglycerate Kinase/metabolism , Binding Sites , Catalysis , Enzyme Activation , Evolution, Molecular , Gene Expression Regulation, Enzymologic , Humans , Kinetoplastida/classification , Kinetoplastida/enzymology , Kinetoplastida/genetics , Models, Molecular , Phosphoglycerate Kinase/genetics , Phylogeny , Protein Binding , Protein Conformation , Structure-Activity Relationship , Substrate Specificity
8.
Methods Mol Biol ; 2116: 627-643, 2020.
Article in English | MEDLINE | ID: mdl-32221946

ABSTRACT

Glycosomes are peroxisome-related organelles of trypanosomatids in which the glycolytic and some other metabolic pathways are compartmentalized. We describe here two methods for the purification of glycosomes from Trypanosoma cruzi for preparative purposes, differential and isopycnic centrifugation. These are two techniques that allow the separation of different cellular compartments based on their different physicochemical characteristics. The first type of centrifugation is a rapid method that does not require large inputs and allows for fractions enriched in specific cell compartments to be obtained. The second type of centrifugation is a more elaborate method, but enables highly purified cellular compartments to be isolated. The success in obtaining these purified, intact organelles critically depends on using an appropriate method for controlled rupture of the cells.


Subject(s)
Cell Fractionation/methods , Microbodies , Trypanosoma cruzi/cytology , Centrifugation, Isopycnic/instrumentation , Centrifugation, Isopycnic/methods
9.
Article in English | MEDLINE | ID: mdl-32083023

ABSTRACT

Glycosomes are peroxisome-related organelles that have been identified in kinetoplastids and diplonemids. The hallmark of glycosomes is their harboring of the majority of the glycolytic enzymes. Our biochemical studies and proteome analysis of Trypanosoma cruzi glycosomes have located, in addition to enzymes of the glycolytic pathway, enzymes of several other metabolic processes in the organelles. These analyses revealed many aspects in common with glycosomes from other trypanosomatids as well as features that seem specific for T. cruzi. Their enzyme content indicates that T. cruzi glycosomes are multifunctional organelles, involved in both several catabolic processes such as glycolysis and anabolic ones. Specifically discussed in this minireview are the cross-talk between glycosomal metabolism and metabolic processes occurring in other cell compartments, and the importance of metabolite translocation systems in the glycosomal membrane to enable the coordination between the spatially separated processes. Possible mechanisms for metabolite translocation across the membrane are suggested by proteins identified in the organelle's membrane-homologs of the ABC and MCF transporter families-and the presence of channels as inferred previously from the detection of channel-forming proteins in glycosomal membrane preparations from the related parasite T. brucei. Together, these data provide insight in the way in which different parts of T. cruzi metabolism, although uniquely distributed over different compartments, are integrated and regulated. Moreover, this information reveals opportunities for the development of drugs against Chagas disease caused by these parasites and for which currently no adequate treatment is available.


Subject(s)
Chagas Disease , Trypanosoma brucei brucei , Trypanosoma cruzi , Chagas Disease/metabolism , Glycolysis , Humans , Microbodies , Organelles
10.
Mol Biochem Parasitol ; 229: 62-74, 2019 04.
Article in English | MEDLINE | ID: mdl-30831156

ABSTRACT

In Trypanosoma cruzi, the causal agent of Chagas disease, the first seven steps of glycolysis are compartmentalized in glycosomes, which are authentic but specialized peroxisomes. Besides glycolysis, activity of enzymes of other metabolic processes have been reported to be present in glycosomes, such as ß-oxidation of fatty acids, purine salvage, pentose-phosphate pathway, gluconeogenesis and biosynthesis of ether-lipids, isoprenoids, sterols and pyrimidines. In this study, we have purified glycosomes from T. cruzi epimastigotes, collected the soluble and membrane fractions of these organelles, and separated peripheral and integral membrane proteins by Na2CO3 treatment and osmotic shock. Proteomic analysis was performed on each of these fractions, allowing us to confirm the presence of enzymes involved in various metabolic pathways as well as identify new components of this parasite's glycosomes.


Subject(s)
Microbodies/chemistry , Microbodies/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Chagas Disease/parasitology , Life Cycle Stages , Microbodies/genetics , Proteomics , Protozoan Proteins/genetics , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development
11.
Mol Biochem Parasitol ; 219: 52-66, 2018 01.
Article in English | MEDLINE | ID: mdl-29133150

ABSTRACT

Per-ARNT-Sim (PAS) domains of proteins play important roles as modules for signalling and cellular regulation processes in widely diverse organisms such as Archaea, Bacteria, protists, plants, yeasts, insects and vertebrates. These domains are present in many proteins where they are used as sensors of stimuli and modules for protein interactions. Characteristically, they can bind a broad spectrum of molecules. Such binding causes the domain to trigger a specific cellular response or to make the protein containing the domain susceptible to responding to additional physical or chemical signals. Different PAS proteins have the ability to sense redox potential, light, oxygen, energy levels, carboxylic acids, fatty acids and several other stimuli. Such proteins have been found to be involved in cellular processes such as development, virulence, sporulation, adaptation to hypoxia, circadian cycle, metabolism and gene regulation and expression. Our analysis of the genome of different kinetoplastid species revealed the presence of PAS domains also in different predicted kinases from these protists. Open-reading frames coding for these PAS-kinases are unusually large. In addition, the products of these genes appear to contain in their structure combinations of domains uncommon in other eukaryotes. The physiological significance of PAS domains in these parasites, specifically in Trypanosoma cruzi, is discussed.


Subject(s)
Life Cycle Stages , Protein Serine-Threonine Kinases/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/physiology , Protein Binding , Protein Interaction Maps , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Signal Transduction , Stress, Physiological , Trypanosoma cruzi/genetics
12.
Cad Saude Publica ; 33(10): e00050216, 2017 Oct 26.
Article in Spanish | MEDLINE | ID: mdl-29091170

ABSTRACT

The current study aimed to determine the seroprevalence of Trypanosoma cruzi infection in Sucre State, Venezuela, and its association with epidemiological risk factors. The cluster sampling design allowed selecting 96 villages and 576 dwellings in the State's 15 municipalities. A total of 2,212 serum samples were analyzed by ELISA, HAI, and IFI. Seroprevalence in Sucre State was 3.12%. Risk factors associated with T. cruzi infection were: accumulated garbage, flooring and wall materials, type of dwelling, living in a house with wattle and daub walls and/or straw roofing, living in a house with risky walls and roofing, risky buildings and wattle and daub outbuildings, poultry inside the human dwelling, and presence of firewood. Infection was associated with individual age, and three seropositive cases were found in individuals less than 15 years of age. Sucre State has epidemiological factors that favor the risk of acquiring T. cruzi infection.


Resumen: El objetivo del presente estudio fue determinar la seroprevalencia de la infección por Trypanosoma cruzi en el estado Sucre (Venezuela) y su asociación con factores de riesgo epidemiológicos. El diseño muestral por conglomerados permitió seleccionar 96 centros poblados y 576 viviendas en los 15 municipios del estado. Asimismo, se evaluaron un total de 2.212 muestras de sueros, a través de las pruebas de ELISA, HAI e IFI. La seroprevalencia en el estado Sucre fue de 3,12%. Los factores de riesgo asociados a la infección por T. cruzi fueron: deposición de basura, materiales predominantes en el piso y paredes, tipo de vivienda, vivir en casas con paredes de bahareque y/o techos de palmas, vivir en casa con paredes y techos de riesgo, construcciones de riesgo y anexos de bahareque, aves dentro de la vivienda y la presencia de leña. La infección se encontró asociada a la edad de los individuos, se detectaron tres casos seropositivos en menores de 15 años. En el estado Sucre existen variables epidemiológicas que favorecen el riesgo a contraer la infección por T. cruzi.


Resumo: O estudo teve como objetivo determinar a soroprevalência da infecção pelo Trypanosoma cruzi no Estado de Sucre, Venezuela, e a associação com fatores de risco epidemiológicos. O delineamento da amostragem em clusters permitiu a seleção de 96 vilarejos e 576 moradias nos 15 municípios do Estado. No total, 2.212 amostras de soro foram analisadas com ELISA, HAI e IFI. O estudo mostrou uma soroprevalência de 3,12% no Estado de Sucre. Os seguintes fatores de risco estiveram associados à infecção pelo T. cruzi: acúmulo de lixo, materiais de piso e paredes impróprios, tipo de moradia, moradias com paredes de pau-a-pique e/ou teto de palha, moradias em situação de risco e construções anexas feitas de pau-a-pique, aves dentro das moradias e presença de lenha. A infecção esteve associada à idade individual, e três casos soropositivos foram identificados em indivíduos com menos de 15 anos de idade. O Estado de Sucre apresenta fatores epidemiológicos que aumentam o risco de infecção pelo T. cruzi.


Subject(s)
Chagas Disease/blood , Chagas Disease/epidemiology , Rural Health/statistics & numerical data , Trypanosoma cruzi , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Chagas Disease/transmission , Child , Child, Preschool , Cross-Sectional Studies , Humans , Infant , Infant, Newborn , Insect Vectors , Male , Middle Aged , Residence Characteristics , Risk Factors , Seroepidemiologic Studies , Venezuela/epidemiology , Young Adult
13.
Cad. Saúde Pública (Online) ; 33(10): e00050216, oct. 2017. tab, graf
Article in Spanish | LILACS | ID: biblio-952323

ABSTRACT

Resumen: El objetivo del presente estudio fue determinar la seroprevalencia de la infección por Trypanosoma cruzi en el estado Sucre (Venezuela) y su asociación con factores de riesgo epidemiológicos. El diseño muestral por conglomerados permitió seleccionar 96 centros poblados y 576 viviendas en los 15 municipios del estado. Asimismo, se evaluaron un total de 2.212 muestras de sueros, a través de las pruebas de ELISA, HAI e IFI. La seroprevalencia en el estado Sucre fue de 3,12%. Los factores de riesgo asociados a la infección por T. cruzi fueron: deposición de basura, materiales predominantes en el piso y paredes, tipo de vivienda, vivir en casas con paredes de bahareque y/o techos de palmas, vivir en casa con paredes y techos de riesgo, construcciones de riesgo y anexos de bahareque, aves dentro de la vivienda y la presencia de leña. La infección se encontró asociada a la edad de los individuos, se detectaron tres casos seropositivos en menores de 15 años. En el estado Sucre existen variables epidemiológicas que favorecen el riesgo a contraer la infección por T. cruzi.


Abstract: The current study aimed to determine the seroprevalence of Trypanosoma cruzi infection in Sucre State, Venezuela, and its association with epidemiological risk factors. The cluster sampling design allowed selecting 96 villages and 576 dwellings in the State's 15 municipalities. A total of 2,212 serum samples were analyzed by ELISA, HAI, and IFI. Seroprevalence in Sucre State was 3.12%. Risk factors associated with T. cruzi infection were: accumulated garbage, flooring and wall materials, type of dwelling, living in a house with wattle and daub walls and/or straw roofing, living in a house with risky walls and roofing, risky buildings and wattle and daub outbuildings, poultry inside the human dwelling, and presence of firewood. Infection was associated with individual age, and three seropositive cases were found in individuals less than 15 years of age. Sucre State has epidemiological factors that favor the risk of acquiring T. cruzi infection.


Resumo: O estudo teve como objetivo determinar a soroprevalência da infecção pelo Trypanosoma cruzi no Estado de Sucre, Venezuela, e a associação com fatores de risco epidemiológicos. O delineamento da amostragem em clusters permitiu a seleção de 96 vilarejos e 576 moradias nos 15 municípios do Estado. No total, 2.212 amostras de soro foram analisadas com ELISA, HAI e IFI. O estudo mostrou uma soroprevalência de 3,12% no Estado de Sucre. Os seguintes fatores de risco estiveram associados à infecção pelo T. cruzi: acúmulo de lixo, materiais de piso e paredes impróprios, tipo de moradia, moradias com paredes de pau-a-pique e/ou teto de palha, moradias em situação de risco e construções anexas feitas de pau-a-pique, aves dentro das moradias e presença de lenha. A infecção esteve associada à idade individual, e três casos soropositivos foram identificados em indivíduos com menos de 15 anos de idade. O Estado de Sucre apresenta fatores epidemiológicos que aumentam o risco de infecção pelo T. cruzi.


Subject(s)
Humans , Animals , Male , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Adult , Aged , Aged, 80 and over , Young Adult , Trypanosoma cruzi , Rural Health/statistics & numerical data , Chagas Disease/blood , Chagas Disease/epidemiology , Venezuela/epidemiology , Seroepidemiologic Studies , Residence Characteristics , Cross-Sectional Studies , Risk Factors , Chagas Disease/transmission , Middle Aged
14.
Mol Biochem Parasitol ; 216: 21-29, 2017 09.
Article in English | MEDLINE | ID: mdl-28645481

ABSTRACT

Trypanosoma rangeli is a hemoflagellate protist that infects wild and domestic mammals as well as humans in Central and South America. Although this parasite is not pathogenic for human, it is being studied because it shares with Trypanosoma cruzi, the etiological agent of Chagas' disease, biological characteristics, geographic distribution, vectors and vertebrate hosts. Several metabolic studies have been performed with T. cruzi epimastigotes, however little is known about the metabolism of T. rangeli. In this work we present the subcellular distribution of the T. rangeli enzymes responsible for the conversion of glucose to pyruvate, as determined by epifluorescense immunomicroscopy and subcellular fractionation involving either selective membrane permeabilization with digitonin or differential and isopycnic centrifugation. We found that in T. rangeli epimastigotes the first six enzymes of the glycolytic pathway, involved in the conversion of glucose to 1,3-bisphosphoglycerate are located within glycosomes, while the last four steps occur in the cytosol. In contrast with T. cruzi, where three isoenzymes (one cytosolic and two glycosomal) of phosphoglycerate kinase are expressed simultaneously, only one enzyme with this activity is detected in T. rangeli epimastigotes, in the cytosol. Consistent with this latter result, we found enzymes involved in auxiliary pathways to glycolysis needed to maintain adenine nucleotide and redox balances within glycosomes such as phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, pyruvate phosphate dikinase and glycerol-3-phosphate dehydrogenase. Glucokinase, galactokinase and the first enzyme of the pentose-phosphate pathway, glucose-6-phosphate dehydrogenase, were also located inside glycosomes. Furthermore, we demonstrate that T. rangeli epimastigotes growing in LIT medium only consume glucose and do not excrete ammonium; moreover, they are unable to survive in partially-depleted glucose medium. The velocity of glucose consumption is about 40% higher than that of procyclic Trypanosoma brucei, and four times faster than by T. cruzi epimastigotes under the same culture conditions.


Subject(s)
Enzymes/metabolism , Glucose/metabolism , Trypanosoma rangeli/metabolism , Animals , Carbohydrate Metabolism , Cell Membrane Permeability , Dogs , Glycolysis , Intracellular Space/metabolism , Microbodies/enzymology , Microbodies/metabolism , Protein Transport , Trypanosoma rangeli/enzymology
15.
Parasitol Int ; 65(5 Pt A): 472-82, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27312997

ABSTRACT

Two different putative galactokinase genes, found in the genome database of Trypanosoma cruzi were cloned and sequenced. Expression of the genes in Escherichia coli resulted for TcGALK-1 in the synthesis of a soluble and active enzyme, and in the case of TcGALK-2 gene a less soluble protein, with predicted molecular masses of 51.9kDa and 51.3kDa, respectively. The Km values determined for the recombinant proteins were for galactose 0.108mM (TcGALK-1) and 0.091mM (TcGALK-2) and for ATP 0.36mM (TcGALK-1) and 0.1mM (TcGALK-2). Substrate inhibition by ATP (Ki 0.414mM) was only observed for TcGALK-2. Gel-filtration chromatography showed that natural TcGALKs and recombinant TcGALK-1 are monomeric. In agreement with the possession of a type-1 peroxisome-targeting signal by both TcGALKs, they were found to be present inside glycosomes using two different methods of subcellular fractionation in conjunction with mass spectrometry. Both genes are expressed in epimastigote and trypomastigote stages since the respective proteins were immunodetected by western blotting. The T. cruzi galactokinases present their highest (52-47%) sequence identity with their counterpart from Leishmania spp., followed by prokaryotic galactokinases such as those from E. coli and Lactococcus lactis (26-23%). In a phylogenetic analysis, the trypanosomatid galactokinases form a separate cluster, showing an affiliation with bacteria. Epimastigotes of T. cruzi can grow in glucose-depleted LIT-medium supplemented with 20mM of galactose, suggesting that this hexose, upon phosphorylation by a TcGALK, could be used in the synthesis of UDP-galactose and also as a possible carbon and energy source.


Subject(s)
Galactokinase/genetics , Galactose/metabolism , Recombinant Proteins/genetics , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Microbodies/metabolism , Sequence Analysis, DNA , Trypanosoma cruzi/growth & development
16.
Invest. clín ; 57(2): 158-175, jun. 2016. ilus, tab
Article in English | LILACS | ID: biblio-841108

ABSTRACT

It was designed and characterized a reporter system to be captured by antibodies bound to ELISA plates. The system was designed with the rK346 from Leishmania infantum, a highly antigenic and specific protein. The rK346 was coupled to the horseradish peroxidase C (HRPc) from Armoracia rusticana using glutaraldehyde or sulfo-SMCC. Glutaraldehyde conjugation was performed in two steps. Separation of conjugates was carried out using a Sepharose S-200 in size exclusion chromatography (SEC); fractions were analyzed via HRPc activity and through ELISA plates sensitized with polyclonal anti-rK346 IgG purified from rabbit serum. A heterogeneous population of conjugates rK346-HRPc was obtained with molecular weights ranging between 109.7 ± 16.5 to 67.6 ± 10.1 kDa; with rK346-HRPc stoichiometries of 1:2; 2:1; 3:1; and 2:2. Conjugation using sulfo-SMCC was carried out first by introducing -SH groups onto the HRPc using the SATA reagent and the antigen was modified with sulfo-SMCC during 45 min. Separation and analysis of conjugates was performed similarly as with glutaraldehyde, resulting in a heterogeneous population of conjugates rK346-HRPc with molecular weights between 150.5 ± 22.6 to 80.0 ± 12.0 kDa; with rK346-HRPC stoichiometries of 2:1; 1:2; 2:2; and 1:3, with an increased conjugation efficiency in comparison with glutaraldehyde. This enables sulfo-SMCC to be used as a potential reagent for coupling the antigen to the HRPc, to design an economic, specific and easy method to apply as a reporter system, available to assess individuals at risk and/or at early and late stages of visceral leishmaniasis.


Se diseñó y caracterizó un sistema reportero para ser capturado por anticuerpos enlazados a placas de ELISA. El sistema fue diseñado con una proteína altamente antigénica y específica, la rK346 de Leishmania infantum. La rK346 fue acoplada a la peroxidasa C de rábano picante (HRPc) de Armoracia rusticana usando glutaraldehido o sulfo-SMCC. La conjugación con glutaraldehido fue realizada en dos pasos. La separación de los conjugados fue llevada a cabo a través de una cromatografía de exclusión molecular sefarosa S-200 (CES), las fracciones fueron analizadas midiendo la actividad HRPc y por placas ELISA sensibilizadas con inmunoglobulina G policlonal anti-rK346, purificada desde suero de conejo. Se obtuvo una población heterogénea de conjugados rK346-HRPc en un rango de pesos moleculares entre 109,7 ± 16,5 a 67,6 ± 10,1 kDa; con estequiometria rK346-HRPc de 1:2; 2:1; 3:1; y 2:2. La conjugación usando sulfo-SMCC se llevó a cabo primero introduciendo grupos -SH en la HRPc usando el reactivo SATA; el antígeno se modificó con sulfo-SMCC. La separación y el análisis de los conjugados se realizaron de forma similar que con el glutaraldehido, resultando en una población heterogénea de conjugados rK346-HRPc con un rango de pesos moleculares entre 150,5 ± 22,6 a 80,0 ± 12,0 kDa; con estequiometria rK346-HRPC de 2:1; 1:2; 2:2 y 1:3, y con una eficiencia de conjugación incrementada en comparación con glutaraldehido. De esta forma, se habilitó al sulfo-SMCC como un reactivo potencial para acoplar antígenos a la HRPc, como método para el diseño de un sistema reportero económico, especifico y fácil de aplicar, útil en la evaluación de individuos en riesgo y/o en estados tempranos o avanzados de leishmaniasis visceral.


Subject(s)
Antibodies, Protozoan/isolation & purification , Leishmania infantum/immunology , Horseradish Peroxidase , Antigens, Protozoan , Immunoconjugates
17.
Exp Parasitol ; 165: 7-15, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26968775

ABSTRACT

Trypanosoma evansi is a monomorphic protist that can infect horses and other animal species of economic importance for man. Like the bloodstream form of the closely related species Trypanosoma brucei, T. evansi depends exclusively on glycolysis for its free-energy generation. In T. evansi as in other kinetoplastid organisms, the enzymes of the major part of the glycolytic pathway are present within organelles called glycosomes, which are authentic but specialized peroxisomes. Since T. evansi does not undergo stage-dependent differentiations, it occurs only as bloodstream forms, it has been assumed that the metabolic pattern of this parasite is identical to that of the bloodstream form of T. brucei. However, we report here the presence of two additional enzymes, phosphoenolpyruvate carboxykinase and PPi-dependent pyruvate phosphate dikinase in T. evansi glycosomes. Their colocalization with glycolytic enzymes within the glycosomes of this parasite has not been reported before. Both enzymes can make use of PEP for contributing to the production of ATP within the organelles. The activity of these enzymes in T. evansi glycosomes drastically changes the model assumed for the oxidation of glucose by this parasite.


Subject(s)
Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Pyruvate, Orthophosphate Dikinase/metabolism , Trypanosoma/enzymology , Animals , Digitonin/pharmacology , Glucosephosphate Dehydrogenase/isolation & purification , Glucosephosphate Dehydrogenase/metabolism , Glycolysis , Hexokinase/isolation & purification , Hexokinase/metabolism , Horses , Indicators and Reagents/pharmacology , Malate Dehydrogenase/isolation & purification , Malate Dehydrogenase/metabolism , Mice , Microbodies/enzymology , Microscopy, Fluorescence , Permeability/drug effects , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phosphoenolpyruvate Carboxykinase (ATP)/isolation & purification , Phosphoglycerate Kinase/isolation & purification , Phosphoglycerate Kinase/metabolism , Phosphopyruvate Hydratase/isolation & purification , Phosphopyruvate Hydratase/metabolism , Pyruvate, Orthophosphate Dikinase/isolation & purification , Rabbits , Rats , Rats, Wistar , Trypanosoma/drug effects
18.
Invest Clin ; 57(2): 158-175, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28429896

ABSTRACT

It was designed and characterized a reporter system to be captured by an- tibodies bound to ELISA plates. The system was designed with the rK346 from Leishmania infantum, a highly antigenic and specific protein. The rK346 was coupled to the horseradish peroxidase C (HRPc) from Armoracia rusticana using glutaraldehyde or sulfo-SMCC. Gluta- raldehyde conjugation was performed in two steps. Separation of conjugates was carried out using a Sepharose S-200 in size exclusion chromatography (SEC); fractions were analyzed via HRPc activity and through ELISA plates sensitized with polyclonal anti-rK346 IgG puri- fied from rabbit serum. A heterogeneous population of conjugates rK346-HRPc was obtained with molecular weights ranging between 109.7 ± 16.5 to 67.6 ± 10.1 kDa; with rK346-HRPe stoichiometries of 1:2; 2:1; 3:1; and 2:2. Conjugation using sulfo-SMCC was carried out first by introducing -SH groups onto the HRPc using the SATA reagent and the antigen was modi- fied with sulfo-SMCC during 45 min. Separation and analysis of conjugates was performed similarly as with glutaraldehyde, resulting in a heterogeneous population of conjugates rK346- HRPc with molecular weights between 150.5 ± 22.6 to 80.0 ± 12.0 kDa; with rK346-HRPC stoichiometries of 2:1; 1:2; 2:2; and 1:3, with an increased conjugation efficiency in compari- son with glutaraldehyde. This enables sulfo-SMCC to be used as a potential reagent for cou- pling the antigen to the HRPc, to design an economic, specific and easy method to apply as a reporter system, available to assess individuals at risk and/or at early and late stages of visceral leishmaniasis.


Subject(s)
Antibodies, Protozoan/isolation & purification , Antigens, Protozoan , Horseradish Peroxidase , Leishmania infantum/immunology , Immunoconjugates
19.
Biomedica ; 35(2): 247-57, 2015.
Article in Spanish | MEDLINE | ID: mdl-26535547

ABSTRACT

INTRODUCTION: The ecological niche of Reduvidae vectors has been modified due to environmental changes and human encroachment into the rural areas. OBJECTIVE: This study evaluates the current entomological indices of triatomines responsible for Trypanosoma cruzi infection in Sucre State, Venezuela. MATERIALS AND METHODS: A cross-sectional and prospective study was conducted in 95 towns and 577 dwellings in the 15 municipalities of the state of Sucre, Venezuela, from August to November, 2008. Triatomine bugs were identified on the basis of morphological characteristics, and their feces examined for T. cruzi infection through direct microscopy. Positive slides were stained with Giemsa and parasites were identified by morphologic characterization. RESULTS: The entomological indices expressing the highest values were dispersion (16.67%) and household colonization (33.33%). The triatomine species captured were: Rhodnius prolixus , Rhodnius main intradomiciliary vector. CONCLUSIONS: Despite the low index of vector infection (1.72%), the existence of species with domiciliary and peridomiciliary reproductive success ensures the persistence of the epidemiological chain both for the disease and the parasite.


Subject(s)
Insect Vectors , Trypanosoma cruzi , Animals , Cross-Sectional Studies , Demography , Entomology , Prospective Studies , Rural Health , Venezuela
20.
Biomédica (Bogotá) ; 35(2): 247-257, abr.-jun. 2015. graf, mapas, tab
Article in Spanish | LILACS | ID: lil-754835

ABSTRACT

Introducción. Debido a los cambios ambientales y a la intervención del hombre en los espacios silvestres, se ha cambiado el nicho ecológico de los vectores reduvídeos. Objetivo. En el presente estudio se evaluó la situación actual de los índices entomológicos de los triatominos responsables de la transmisión de Trypanosoma cruzi en el estado Sucre. Materiales y métodos. Se llevó a cabo un estudio prospectivo transversal en 96 centros poblados y 576 viviendas de los 15 municipios del estado Sucre, Venezuela, entre agosto y noviembre de 2008. Los vectores se identificaron con base en sus características morfológicas. La identificación de Trypanosoma spp. en las heces de los triatominos se hizo mediante el examen directo por microscopía. Las láminas positivas se tiñeron con Giemsa y los parásitos se identificaron por sus características morfológicas. Resultados. Los índices entomológicos con los valores más elevados fueron la dispersión en centros poblados rurales del estado Sucre (16,67 %) y la colonización de las viviendas (33,33 %). Las especies de triatominos capturados fueron Rhodnius prolixus , Rhodnius pictipes , Rhodnius robustus , Triatoma maculata y Panstrongylus geniculatus , siendo T . maculata el principal vector en el domicilio. Conclusiones. A pesar del bajo índice de infección natural en vectores (1,72 %), la existencia de especies con éxito reproductivo en el domicilio y el peridomicilio puede garantizar el mantenimiento de la cadena epidemiológica, tanto de la enfermedad como del parásito.


Introduction: The ecological niche of Reduvidae vectors has been modified due to environmental changes and human encroachment into the rural areas. Objective: This study evaluates the current entomological indices of triatomines responsible for Trypanosoma cruzi infection in Sucre State, Venezuela. Materials and methods: A cross-sectional and prospective study was conducted in 95 towns and 577 dwellings in the 15 municipalities of the state of Sucre, Venezuela, from August to November, 2008. Triatomine bugs were identified on the basis of morphological characteristics, and their feces examined for T. cruzi infection through direct microscopy. Positive slides were stained with Giemsa and parasites were identified by morphologic characterization. Results: The entomological indices expressing the highest values were dispersion (16.67%) and household colonization (33.33%). The triatomine species captured were: Rhodnius prolixus , Rhodnius main intradomiciliaryvector. Conclusions: Despite the low index of vector infection (1.72%), the existence of species with domiciliary and peridomiciliary reproductive success ensures the persistence of the epidemiological chain both for the disease and the parasite.


Subject(s)
Animals , Insect Vectors , Trypanosoma cruzi , Cross-Sectional Studies , Demography , Entomology , Prospective Studies , Rural Health , Venezuela
SELECTION OF CITATIONS
SEARCH DETAIL
...