Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(24): 21983-21995, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360436

ABSTRACT

Core-shell magnetic air-stable nanoparticles have attracted increasing interest in recent years. Attaining a satisfactory distribution of magnetic nanoparticles (MNPs) in polymeric matrices is difficult due to magnetically induced aggregation, and supporting the MNPs on a nonmagnetic core-shell is a well-established strategy. In order to obtain magnetically active polypropylene (PP) nanocomposites by melt mixing, the thermal reduction of graphene oxides (TrGO) at two different temperatures (600 and 1000 °C) was carried out, and, subsequently, metallic nanoparticles (Co or Ni) were dispersed on them. The XRD patterns of the nanoparticles show the characteristic peaks of the graphene, Co, and Ni nanoparticles, where the estimated sizes of Ni and Co were 3.59 and 4.25 nm, respectively. The Raman spectroscopy presents typical D and G bands of graphene materials as well as the corresponding peaks of Ni and Co nanoparticles. Elemental and surface area studies show that the carbon content and surface area increase with thermal reduction, as expected, following a reduction in the surface area by the support of MNPs. Atomic absorption spectroscopy demonstrates about 9-12 wt % metallic nanoparticles supported on the TrGO surface, showing that the reduction of GO at two different temperatures has no significant effect on the support of metallic nanoparticles. Fourier transform infrared (FT-IR) spectroscopy shows that the addition of a filler does not alter the chemical structure of the polymer. Scanning electron microscopy of the fracture interface of the samples demonstrates consistent dispersion of the filler in the polymer. The TGA analysis shows that, with the incorporation of the filler, the initial (Tonset) and maximum (Tmax) degradation temperatures of the PP nanocomposites increase up to 34 and 19 °C, respectively. The DSC results present an improvement in the crystallization temperature and percent crystallinity. The filler addition slightly enhances the elastic modulus of the nanocomposites. The results of the water contact angle confirm that the prepared nanocomposites are hydrophilic. Importantly, the diamagnetic matrix is transformed into a ferromagnetic one with the addition of the magnetic filler.

2.
BMC Complement Med Ther ; 22(1): 39, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35139827

ABSTRACT

BACKGROUND: Recurrence and resistance of Candida spp. infections is associated with the ability of these microorganisms to present several virulence patterns such as morphogenesis, adhesion, and biofilm formation. In the search for agents with antivirulence activity, essential oils could represent a strategy to act against biofilms and to potentiate antifungal drugs. OBJECTIVE: To evaluate the antivirulence effect of Origanum vulgare L. essential oil (O-EO) against Candida spp. and to potentiate the effect of fluconazole and nystatin. METHODS: The effect of O-EO was evaluated on ATCC reference strains of C. albicans and non-albicans Candida species. Minimum inhibitory concentration (MIC) was determined through broth microdilution assay. Adhesion to microplates was determined by crystal violet (CV) assay. An adapted scratch assay in 24-well was used to determine the effect of essential oil on biofilms proliferation. Viability of biofilms was evaluated by MTT reduction assay and through a checkerboard assay we determined if O-EO could act synergistically with fluconazole and nystatin. RESULTS: MIC for C. albicans ATCC-90029 and ATCC-10231 was 0.01 mg/L and 0.97 mg/L, respectively. For non-albicans Candida strains MIC values were 2.6 mg/L for C. dubliniensis ATCC-CD36 and 5.3 mg/L for C. krusei ATCC-6258. By using these concentrations, O-EO inhibited morphogenesis, adhesion, and proliferation at least by 50% for the strains assayed. In formed biofilms O-EO decreased viability in ATCC 90029 and ATCC 10231 strains (IC50 7.4 and 2.8 mg/L respectively). Finally, we show that O-EO interacted synergistically with fluconazole and nystatin. CONCLUSIONS: This study demonstrate that O-EO could be considered to improve the antifungal treatment against Candida spp.


Subject(s)
Oils, Volatile , Origanum , Candida , Fluconazole/pharmacology , Nystatin/pharmacology , Oils, Volatile/pharmacology , Virulence
3.
Polymers (Basel) ; 13(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070129

ABSTRACT

A study addressed to develop new recyclable and/or biodegradable magnetic polymeric materials is reported. The selected matrices were polypropylene (PP) and poly (lactic acid) (PLA). As known, PP corresponds to a non-polar homo-chain polymer and a commodity, while PLA is a biodegradable polar hetero-chain polymer. To obtain the magnetic nanocomposites, magnetite supported on thermally reduced graphene oxide (TrGO:Fe3O4 nanomaterial) to these polymer matrices was added. The TrGO:Fe3O4 nanomaterials were obtained by a co-precipitation method using two types of TrGO obtained by the reduction at 600 °C and 1000 °C of graphite oxide. Two ratios of 2.5:1 and 9.6:1 of the magnetite precursor (FeCl3) and TrGO were used to produce these nanomaterials. Consequently, four types of nanomaterials were obtained and characterized. Nanocomposites were obtained using these nanomaterials as filler by melt mixer method in polypropylene (PP) or polylactic acid (PLA) matrix, the filler contents were 3, 5, and 7 wt.%. Results showed that TrGO600-based nanomaterials presented higher coercivity (Hc = 8.5 Oe) at 9.6:1 ratio than TrGO1000-based nanomaterials (Hc = 4.2 Oe). PLA and PP nanocomposites containing 7 wt.% of filler presented coercivity of 3.7 and 5.3 Oe, respectively. Theoretical models were used to analyze some relevant experimental results of the nanocomposites such as mechanical and magnetic properties.

4.
Polymers (Basel) ; 13(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379371

ABSTRACT

This work consists of studying the influence of two thermally reduced graphene oxides (TRGOs), containing oxygen levels of 15.8% and 8.9%, as fillers on the barrier properties of thermoplastic polyurethane (TPU) nanocomposites prepared by melt-mixing processes. The oxygen contents of the TRGOs were obtained by carrying out the thermal reduction of graphene oxide (GO) at 600 °C and 1000 °C, respectively. The presence and contents of oxygen in the TRGO samples were determined by XPS and their structural differences were determined by using X-ray diffraction analysis and Raman spectroscopy. In spite of the decrease of the elongation at break of the nanocomposites, the Young modulus was increased by up to 320% with the addition of TRGO. The barrier properties of the nanocomposites were enhanced as was evidenced by the decrease of the permeability to oxygen, which reached levels as low as -46.1%.

5.
Planta Med ; 86(16): 1225-1234, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32663893

ABSTRACT

Candida albicans is the most common human fungal pathogen, and with the increase in resistance rates worldwide, it is necessary to search for new pharmacological alternatives. Lavandula dentata L. essential oil is recognized as having antimicrobial properties. However, its effect against fungal biofilms has been poorly described. C. albicans-related infections involve the development of biofilms, which are highly resistant to conventional antifungals. In this work, we evaluated the antibiofilm effect of L. dentata L. essential oil against C. albicans. First, we characterized the essential oil by gas chromatography-mass spectrometry. The antifungal effect on C. albicans reference strains was evaluated by a disk diffusion assay and the minimal inhibitory concentration was obtained through a microdilution assay. The effect of the essential oil on the adhesion ability of C. albicans was determined through a crystal violet assay, and morphogenesis inhibition was assessed by light microscopy. The effect of the essential oil on the microarchitecture of biofilms was evaluated through scanning electron microscopy. Finally, the antibiofilm effect was evaluated through an adapted biofilm scratch assay and XTT viability assay. The main constituent of the essential oil was the monoterpenoid eucalyptol (60%). The essential oil presented minimal inhibitory concentrations of 156 and 130 µg/mL against two strains assayed. This minimal inhibitory concentration inhibited adhesion, morphogenesis, biofilm formation, altered microarchitecture, and decreased the viability of established biofilms formed on abiotic surfaces for both strains assayed. This study demonstrates that the essential oil from L. dentata could be a promising treatment against C. albicans biofilms.


Subject(s)
Lavandula , Oils, Volatile , Antifungal Agents/pharmacology , Biofilms , Candida albicans , Chile , Humans , Microbial Sensitivity Tests , Oils, Volatile/pharmacology
6.
Polymers (Basel) ; 12(3)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178247

ABSTRACT

Itaconic acid (IA) is an organic acid produced by the fermentation of sugars with aspergillus. It has been identified as one of the top 12 building-block chemicals. Here, we report the use of IA as a possible substitute to petroleum-based compatibilizers in polymer composite. We applied this study to thermoplastic elastomers based on styrene copolymers, since they are commonly used in blends and composites. Poly(styrene-b-ethylene-butylene-b-styrene) (SEBS) was grafted with 2.6 wt.% of itaconic acid (SEBS-g-IA) prepared by a reactive melt-mixing process, and was subsequently used to prepare composites filled with BaTiO3.). IA was successfully grafted as demonstrated by FTIR and XRD. SEBS-g-IA composites presented better mechanical properties, achieving an increase of Young modulus up to 80% compared with the neat polymer. This was ascribed to better dispersion and compatibility with the filler. Additionally, SEBS-g-IA showed increased dielectric permittivity, i.e., showed increased polarity, which indicates that it could potentially be used as a modifier for specialized polymers.

7.
Polymers (Basel) ; 8(11)2016 Oct 31.
Article in English | MEDLINE | ID: mdl-30974661

ABSTRACT

Nanocomposites of layered silica nanoparticles (LSN) obtained by the sol⁻gel method, and commercial montmorillonite clay Cloisite®20A with polypropylene (PP) and Cloisite®30B with polyamide-6 (PA6) were prepared by melt blending in order to study their effects on barrier, mechanical properties, and thermal stability. Transmission electron microscopy (TEM) showed that all of the nanocomposites present agglomerated nanoparticles with some degree of individual particles. In barrier properties, LSN dramatically increased the oxygen and water vapor permeability of PP at low loadings (<5 wt %) due to the percolation effect. However, in PP and PA6 nanocomposites with clays, the permeability showed increases and decreases depending on the solubility of the permeating gases with the clays and the polymers. Tensile stress-strain tests otherwise showed that the nanocomposites with clays present an enhancement in the elastic modulus. Meanwhile, with the LSN, a decrease was found due to the formation of agglomerations and voids. Finally, thermogravimetric analysis under inert conditions showed the nanoparticles do not have a significant effect on the thermal stability of the nanocomposites. These results expose the relevance of the type of layered nanoparticle and polymer matrix on the barrier, mechanical, and thermal behaviors of the resulting nanocomposites.

8.
Macromol Rapid Commun ; 31(6): 563-7, 2010 Mar 16.
Article in English | MEDLINE | ID: mdl-21590943

ABSTRACT

A set of poly(propylene) composites containing different amounts of copper nanoparticles (CNP) were prepared by the melt mixed method and their antimicrobial behavior was quantitatively studied. The time needed to reduce the bacteria to 50% dropped to half with only 1 v/v % of CNP, compared to the polymer without CNP. After 4 h, this composite killed more than 99.9% of the bacteria. The biocide kinetics can be controlled by the nanofiller content; composites with CNP concentrations higher than 10 v/v % eliminated 99% of the bacteria in less than 2 h. X-ray photoelectron spectroscopy did not detect CNP at the surface, therefore the biocide behavior was attributed to copper in the bulk of the composite.

SELECTION OF CITATIONS
SEARCH DETAIL
...