Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ann N Y Acad Sci ; 1511(1): 40-58, 2022 05.
Article in English | MEDLINE | ID: mdl-35103316

ABSTRACT

Calcium intake remains inadequate in many low- and middle-income countries, especially in Africa and South Asia, where average intakes can be below 400 mg/day. Given the vital role of calcium in bone health, metabolism, and cell signaling, countries with low calcium intake may want to consider food-based approaches to improve calcium consumption and bioavailability within their population. This is especially true for those with low calcium intake who would benefit the most, including pregnant women (by reducing the risk of preeclampsia) and children (by reducing calcium-deficiency rickets). Specifically, some animal-source foods that are naturally high in bioavailable calcium and plant foods that can contribute to calcium intake could be promoted either through policies or educational materials. Some food processing techniques can improve the calcium content in food or increase calcium bioavailability. Staple-food fortification with calcium can also be a cost-effective method to increase intake with minimal behavior change required. Lastly, biofortification is currently being investigated to improve calcium content, either through genetic screening and breeding of high-calcium varieties or through the application of calcium-rich fertilizers. These mechanisms can be used alone or in combination based on the local context to improve calcium intake within a population.


Subject(s)
Calcium , Food, Fortified , Animals , Biological Availability , Bone and Bones , Calcium, Dietary , Female , Humans , Pregnancy
2.
Biotechnol Rep (Amst) ; 11: 90-98, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28352545

ABSTRACT

Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4) is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.

3.
Transgenic Res ; 24(1): 87-97, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25095900

ABSTRACT

Wheat provides 20 % of the calories consumed worldwide. Powdery mildew infections of wheat can result in more than 30 % yield loss but it has been demonstrated that wheat overexpressing Pm3b, an allele of the R gene Pm3, has enhanced resistance against powdery mildew under field conditions. A gene expression profile study using GeneChip Wheat Genome Array and Fluidigm 96.96 Dynamic Arrays was performed to obtain insights into the mode of action of Pm3b and to elucidate the molecular basis of pleiotropic effects observed in three out of four independent transgenic events under field conditions. A cluster analysis of the microarray data and a principal component analysis of the Fluidigm 96.96 Dynamic Arrays data showed that transgenic lines and null segregants grouped together. The microarray analysis of samples from fungicide-treated plants revealed that significantly fewer genes were differentially expressed in Pm3b#1 than in Pm3b#2, which had a pleiotropic phenotype in the field, compared to their null segregants. Together, our data provide evidence that the environment influenced gene expression in the Pm3b lines more than the transgene itself.


Subject(s)
Plant Diseases/genetics , Plant Proteins/biosynthesis , Plants, Genetically Modified , Triticum/genetics , Alleles , Ascomycota/pathogenicity , Disease Resistance/genetics , Gene Expression Regulation, Plant , Gene-Environment Interaction , Plant Diseases/microbiology , Plant Proteins/genetics , Transcriptome/genetics , Transgenes , Triticum/growth & development
4.
GM Crops Food ; 3(2): 115-22, 2012.
Article in English | MEDLINE | ID: mdl-22538226

ABSTRACT

Outcrosses from genetically modified (GM) to conventional crops by pollen-mediated gene flow (PMGF) are a concern when growing GM crops close to non-GM fields. This also applies to the experimental releases of GM plants in field trials. Therefore, biosafety measures such as isolation distances and surveying of PMGF are required by the regulatory authorities in Switzerland. For two and three years, respectively, we monitored crop-to-crop PMGF from GM wheat field trials in two locations in Switzerland. The pollen donors were two GM spring wheat lines with enhanced fungal resistance and a herbicide tolerance as a selection marker. Seeds from the experimental plots were sampled to test the detection method for outcrosses. Two outcrosses were found adjacent to a transgenic plot within the experimental area. For the survey of PMGF, pollen receptor plots of the conventional wheat variety Frisal used for transformation were planted in the border crop and around the experimental field up to a distance of 200 m. Although the environmental conditions were favorable and the donor and receptor plots flowered at the same time, only three outcrosses were found in approximately 185,000 tested seedlings from seeds collected outside the experimental area. All three hybrids were found in the border crop surrounding the experimental area, but none outside the field. We conclude that a pollen barrier (border crop) and an additional isolation distance of 5 m is a sufficient measure to reduce PMGF from a GM wheat field trial to cleistogamous varieties in commercial fields below a level that can be detected.


Subject(s)
Gene Flow , Plants, Genetically Modified/genetics , Pollen/genetics , Triticum/genetics , Aminobutyrates/toxicity , Crosses, Genetic , Disease Resistance/genetics , Fungi/physiology , Herbicide Resistance/genetics , Herbicides/toxicity , Host-Pathogen Interactions , Plant Diseases/genetics , Plant Diseases/microbiology , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/microbiology , Seedlings/drug effects , Seedlings/genetics , Seedlings/microbiology , Seeds/genetics , Switzerland , Triticum/drug effects , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL