Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(21): 8282-8290, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38717341

ABSTRACT

Hamburger wrapping paper, coated with water-based barrier coatings, used in the food packaging industry was studied by using the total organic fluorine (TOF) method based on combustion ion chromatography and fluorine-19 solid-state nuclear magnetic resonance (19F ss-NMR) spectroscopy. Although the TOF method is a fast and affordable method used to screen for per- and polyfluoroalkyl substances (PFAS), the amount of fluorine it measures is heavily dependent on the extraction step and, therefore could lead to inaccurate results. Fluorine-19 ss-NMR spectroscopy can differentiate between organic and inorganic fluorinated sources, eliminating the need for sample clean up. To illustrate this, the 19F ss-NMR spectra of clean coated paper samples that contained naturally occurring F- ions from the talc raw material and spiked samples containing perfluorooctanoic acid were compared. A range of experimental conditions was explored to improve sensitivity for low PFAS concentrations (in the order of 10-20 mg/kg). Despite the disadvantages of ss-NMR spectroscopy, such as the low limit of detection and resolution, the results demonstrate it can be a viable tool to directly detect PFAS moieties in consumer and food packaging. Therefore, 19F solid-state NMR spectroscopy challenges and complements current methods, which only provide indirect evidence of the presence of PFAS.


Subject(s)
Food Packaging , Magnetic Resonance Spectroscopy , Magnetic Resonance Spectroscopy/methods , Fluorine/analysis , Fluorocarbons/analysis , Fluorocarbons/chemistry , Food Contamination/analysis , Caprylates/analysis , Caprylates/chemistry
2.
Biochemistry ; 63(9): 1131-1146, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38598681

ABSTRACT

Despite the importance of proline conformational equilibria (trans versus cis amide and exo versus endo ring pucker) on protein structure and function, there is a lack of convenient ways to probe proline conformation. 4,4-Difluoroproline (Dfp) was identified to be a sensitive 19F NMR-based probe of proline conformational biases and cis-trans isomerism. Within model compounds and disordered peptides, the diastereotopic fluorines of Dfp exhibit similar chemical shifts (ΔδFF = 0-3 ppm) when a trans X-Dfp amide bond is present. In contrast, the diastereotopic fluorines exhibit a large (ΔδFF = 5-12 ppm) difference in chemical shift in a cis X-Dfp prolyl amide bond. DFT calculations, X-ray crystallography, and solid-state NMR spectroscopy indicated that ΔδFF directly reports on the relative preference of one proline ring pucker over the other: a fluorine which is pseudo-axial (i.e., the pro-4R-F in an exo ring pucker, or the pro-4S-F in an endo ring pucker) is downfield, while a fluorine which is pseudo-equatorial (i.e., pro-4S-F when exo, or pro-4R-F when endo) is upfield. Thus, when a proline is disordered (a mixture of exo and endo ring puckers, as at trans-Pro in peptides in water), it exhibits a small Δδ. In contrast, when the Pro is ordered (i.e., when one ring pucker is strongly preferred, as in cis-Pro amide bonds, where the endo ring pucker is strongly favored), a large Δδ is observed. Dfp can be used to identify inherent induced order in peptides and to quantify proline cis-trans isomerism. Using Dfp, we discovered that the stable polyproline II helix (PPII) formed in the denatured state (8 M urea) exhibits essentially equal populations of the exo and endo proline ring puckers. In addition, the data with Dfp suggested the specific stabilization of PPII by water over other polar solvents. These data strongly support the importance of carbonyl solvation and n → π* interactions for the stabilization of PPII. Dfp was also employed to quantify proline cis-trans isomerism as a function of phosphorylation and the R406W mutation in peptides derived from the intrinsically disordered protein tau. Dfp is minimally sterically disruptive and can be incorporated in expressed proteins, suggesting its broad application in understanding proline cis-trans isomerization, protein folding, and local order in intrinsically disordered proteins.


Subject(s)
Fluorine , Proline , Proline/chemistry , Proline/analogs & derivatives , Fluorine/chemistry , Crystallography, X-Ray/methods , Protein Conformation , Magnetic Resonance Spectroscopy/methods , Peptides/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Molecular Conformation
3.
Nat Commun ; 14(1): 2293, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37085515

ABSTRACT

Oxygen-containing carbons are promising supports and metal-free catalysts for many reactions. However, distinguishing the role of various oxygen functional groups and quantifying and tuning each functionality is still difficult. Here we investigate the role of Brønsted acidic oxygen-containing functional groups by synthesizing a diverse library of materials. By combining acid-catalyzed elimination probe chemistry, comprehensive surface characterizations, 15N isotopically labeled acetonitrile adsorption coupled with magic-angle spinning nuclear magnetic resonance, machine learning, and density-functional theory calculations, we demonstrate that phenolic is the main acid site in gas-phase chemistries and unexpectedly carboxylic groups are much less acidic than phenolic groups in the graphitized mesoporous carbon due to electron density delocalization induced by the aromatic rings of graphitic carbon. The methodology can identify acidic sites in oxygenated carbon materials in solid acid catalyst-driven chemistry.

4.
Nat Commun ; 14(1): 1237, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36871077

ABSTRACT

HIV-1 maturation inhibitors (MIs), Bevirimat (BVM) and its analogs interfere with the catalytic cleavage of spacer peptide 1 (SP1) from the capsid protein C-terminal domain (CACTD), by binding to and stabilizing the CACTD-SP1 region. MIs are under development as alternative drugs to augment current antiretroviral therapies. Although promising, their mechanism of action and associated virus resistance pathways remain poorly understood at the molecular, biochemical, and structural levels. We report atomic-resolution magic-angle-spinning NMR structures of microcrystalline assemblies of CACTD-SP1 complexed with BVM and/or the assembly cofactor inositol hexakisphosphate (IP6). Our results reveal a mechanism by which BVM disrupts maturation, tightening the 6-helix bundle pore and quenching the motions of SP1 and the simultaneously bound IP6. In addition, BVM-resistant SP1-A1V and SP1-V7A variants exhibit distinct conformational and binding characteristics. Taken together, our study provides a structural explanation for BVM resistance as well as guidance for the design of new MIs.


Subject(s)
HIV-1 , Triterpenes , Capsid , Capsid Proteins , Catalysis
5.
Nat Commun ; 13(1): 6795, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357375

ABSTRACT

Microtubules (MTs) and their associated proteins play essential roles in maintaining cell structure, organelle transport, cell motility, and cell division. Two motors, kinesin and cytoplasmic dynein link the MT network to transported cargos using ATP for force generation. Here, we report an all-atom NMR structure of nucleotide-free kinesin-1 motor domain (apo-KIF5B) in complex with paclitaxel-stabilized microtubules using magic-angle-spinning (MAS) NMR spectroscopy. The structure reveals the position and orientation of the functionally important neck linker and how ADP induces structural and dynamic changes that ensue in the neck linker. These results demonstrate that the neck linker is in the undocked conformation and oriented in the direction opposite to the KIF5B movement. Chemical shift perturbations and intensity changes indicate that a significant portion of ADP-KIF5B is in the neck linker docked state. This study also highlights the unique capability of MAS NMR to provide atomic-level information on dynamic regions of biological assemblies.


Subject(s)
Kinesins , Microtubules , Microtubules/metabolism , Magnetic Resonance Spectroscopy , Adenosine Diphosphate/metabolism
6.
Solid State Nucl Magn Reson ; 122: 101831, 2022 12.
Article in English | MEDLINE | ID: mdl-36182713

ABSTRACT

19F magic angle spinning (MAS) NMR spectroscopy is a powerful tool for characterization of fluorinated solids. The recent development of 19F MAS NMR probes, operating at spinning frequencies of 60-111 kHz, enabled analysis of systems spanning from organic molecules to pharmaceutical formulations to biological assemblies, with unprecedented resolution. Herein, we systematically evaluate the benefits of high MAS frequencies (60-111 kHz) for 1D and 2D 19F-detected experiments in two pharmaceuticals, the antimalarial drug mefloquine and a formulation of the cholesterol-lowering drug atorvastatin calcium. We demonstrate that 1H decoupling is essential and that scalar-based, heteronuclear single quantum coherence (HSQC) and heteronuclear multiple quantum coherence (HMQC) correlation experiments become feasible and efficient at the MAS frequency of 100 kHz. This study opens doors for the applications of high frequency 19F MAS NMR to a wide range of problems in chemistry and biology.


Subject(s)
Magnetic Resonance Imaging , Drug Compounding , Magnetic Resonance Spectroscopy/methods
7.
Nat Commun ; 13(1): 5186, 2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36057603

ABSTRACT

Ruthenium (Ru) is the one of the most promising catalysts for polyolefin hydrogenolysis. Its performance varies widely with the support, but the reasons remain unknown. Here, we introduce a simple synthetic strategy (using ammonia as a modulator) to tune metal-support interactions and apply it to Ru deposited on titania (TiO2). We demonstrate that combining deuterium nuclear magnetic resonance spectroscopy with temperature variation and density functional theory can reveal the complex nature, binding strength, and H amount. H2 activation occurs heterolytically, leading to a hydride on Ru, an H+ on the nearest oxygen, and a partially positively charged Ru. This leads to partial reduction of TiO2 and high coverages of H for spillover, showcasing a threefold increase in hydrogenolysis rates. This result points to the key role of the surface hydrogen coverage in improving hydrogenolysis catalyst performance.

8.
J Am Chem Soc ; 144(23): 10543-10555, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35638584

ABSTRACT

The nucleocapsid (N) protein is one of the four structural proteins of the SARS-CoV-2 virus and plays a crucial role in viral genome organization and, hence, replication and pathogenicity. The N-terminal domain (NNTD) binds to the genomic RNA and thus comprises a potential target for inhibitor and vaccine development. We determined the atomic-resolution structure of crystalline NNTD by integrating solid-state magic angle spinning (MAS) NMR and X-ray diffraction. Our combined approach provides atomic details of protein packing interfaces as well as information about flexible regions as the N- and C-termini and the functionally important RNA binding, ß-hairpin loop. In addition, ultrafast (100 kHz) MAS 1H-detected experiments permitted the assignment of side-chain proton chemical shifts not available by other means. The present structure offers guidance for designing therapeutic interventions against the SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Genome, Viral , Humans , Nucleocapsid Proteins/chemistry , RNA
9.
J Magn Reson ; 340: 107227, 2022 07.
Article in English | MEDLINE | ID: mdl-35568013

ABSTRACT

Fluorination is a versatile and valuable modification for numerous systems, and 19F NMR spectroscopy is the premier method for their structural characterization. 19F chemical shift anisotropy is a sensitive probe of structure and dynamics, even though 19F chemical shift tensors have been reported for only a handful of systems to date. Here, we explore γ-encoded R-symmetry based recoupling sequences for the determination of 19F chemical shift tensors in fully protonated organic solids at high, 60-100 kHz MAS frequencies. We show that the performance of 19F-RNCSA experiments improves with increasing MAS frequencies, and that 1H decoupling is required to determine accurate chemical shift tensor parameters. In addition, these sequences are tolerant to B1-field inhomogeneity making them suitable for a wide range of systems and experimental conditions.


Subject(s)
Magnetic Resonance Spectroscopy , Anisotropy , Magnetic Resonance Spectroscopy/methods
10.
J Biomol NMR ; 76(1-2): 29-37, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35320434

ABSTRACT

Sulfur-containing sites in proteins are of great importance for both protein structure and function, including enzymatic catalysis, signaling pathways, and recognition of ligands and protein partners. Selenium-77 is an NMR active spin-1/2 nucleus that shares many physiochemical properties with sulfur and can be readily introduced into proteins at sulfur sites without significant perturbations to the protein structure. The sulfur-containing amino acid methionine is commonly found at protein-protein or protein-ligand binding sites. Its selenium-containing counterpart, selenomethionine, has a broad chemical shift dispersion useful for NMR-based studies of complex systems. Methods such as (1H)-77Se-13C double cross polarization or {77Se}-13C REDOR could be valuable to map the local environment around selenium sites in proteins but have not been demonstrated to date. In this work, we explore these dipolar transfer mechanisms for structural characterization of the GB1 V39SeM variant of the model protein GB1 and demonstrate that 77Se-13C based correlations can be used to map the local environment around selenium sites in proteins. We have found that the general detection limit is ~ 5 Å, but longer range distances up to ~ 7 Å can be observed as well. This study establishes a framework for the future characterization of selenium sites at protein-protein or protein-ligand binding interfaces.


Subject(s)
Selenium , Ligands , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Selenium/chemistry , Selenium/metabolism , Selenomethionine/metabolism , Sulfur/chemistry
11.
Front Mol Biosci ; 8: 767040, 2021.
Article in English | MEDLINE | ID: mdl-34957215

ABSTRACT

Histidine residues play important structural and functional roles in proteins, such as serving as metal-binding ligands, mediating enzyme catalysis, and modulating proton channel activity. Many of these activities are modulated by the ionization state of the imidazole ring. Here we present a fast MAS NMR approach for the determination of protonation and tautomeric states of His at frequencies of 40-62 kHz. The experiments combine 1H detection with selective magnetization inversion techniques and transferred echo double resonance (TEDOR)-based filters, in 2D heteronuclear correlation experiments. We illustrate this approach using microcrystalline assemblies of HIV-1 CACTD-SP1 protein.

12.
Anal Chem ; 93(38): 13029-13037, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34517697

ABSTRACT

Fluorinated drugs occupy a large and growing share of the pharmaceutical market. Here, we explore high-frequency, 60 to 111 kHz, 19F magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy for the structural characterization of fluorinated active pharmaceutical ingredients in commercial formulations of seven blockbuster drugs: Celebrex, Cipro, Crestor, Levaquin, Lipitor, Prozac, and Zyvox. 19F signals can be observed in a single scan, and spectra with high signal-to-noise ratios can be acquired in minutes. 19F spectral parameters, such as chemical shifts and line widths, are sensitive to both the nature of the fluorine moiety and the formulation. We anticipate that the fast 19F MAS NMR-based approach presented here will be valuable for the rapid analysis of fluorine-containing drugs in a wide variety of formulations.


Subject(s)
Magnetic Resonance Imaging , Pharmaceutical Preparations , Atorvastatin , Fluorine , Magnetic Resonance Spectroscopy
13.
Chem Sci ; 12(34): 11554-11564, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34567504

ABSTRACT

Heteronuclear dipolar coupling is indispensable in revealing vital information related to the molecular structure and dynamics, as well as intermolecular interactions in various solid materials. Although numerous approaches have been developed to selectively reintroduce heteronuclear dipolar coupling under MAS, most of them lack universality and can only be applied to limited spin systems. Herein, we introduce a new and robust technique dubbed phase modulated rotary resonance (PMRR) for reintroducing heteronuclear dipolar couplings while suppressing all other interactions under a broad range of MAS conditions. The standard PMRR requires the radiofrequency (RF) field strength of only twice the MAS frequency, can efficiently recouple the dipolar couplings with a large scaling factor of 0.50, and is robust to experimental imperfections. Moreover, the adjustable window modification of PMRR, dubbed wPMRR, can improve its performance remarkably, making it well suited for the accurate determination of dipolar couplings in various spin systems. The robust performance of such pulse sequences has been verified theoretically and experimentally via model compounds, at different MAS frequencies. The application of the PMRR technique was demonstrated on the H-ZSM-5 zeolite, where the interaction between the Brønsted acidic hydroxyl groups of H-ZSM-5 and the absorbed trimethylphosphine oxide (TMPO) were probed, revealing the detailed configuration of super acid sites.

14.
Magn Reson (Gott) ; 2(1): 239-249, 2021.
Article in English | MEDLINE | ID: mdl-34136885

ABSTRACT

Dynamic nuclear polarization-enhanced (DNP) magic angle spinning (MAS) NMR of biological systems is a rapidly growing field. Large signal enhancements make the technique particularly attractive for signal-limited cases, such as studies of complex biological assemblies or at natural isotopic abundance. However, spectral resolution is considerably reduced compared to ambient-temperature non-DNP spectra. Herein, we report a systematic investigation into sensitivity and resolution of 1D and 2D 13C-detected DNP MAS NMR experiments on HIV-1 CA tubular assemblies. We show that the magnitude and sign of signal enhancement as well as the homogeneous line width are strongly dependent on the biradical concentration, the dominant polarization transfer pathway, and the enhancement buildup time. Our findings provide guidance for optimal choice of sample preparation and experimental conditions in DNP experiments.

15.
Anal Chem ; 93(23): 8210-8218, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34080855

ABSTRACT

Fluorine-containing compounds comprise 20 to 30 percent of all commercial drugs, and the proportion of fluorinated pharmaceuticals is rapidly growing. While magic angle spinning (MAS) NMR spectroscopy is a popular technique for analysis of solid pharmaceutical compounds, fluorine has been underutilized as a structural probe so far. Here, we report a fast (40-60 kHz) MAS 19F NMR approach for structural characterization of fluorine-containing crystalline pharmaceutical compounds at natural abundance, using the antimalarial fluorine-containing drug mefloquine as an example. We demonstrate the utility of 2D 19F-13C and 19F-19F dipolar-coupling-based correlation experiments for 19F and 13C resonance frequency assignment, which permit identification of crystallographically inequivalent sites. The efficiency of 19F-13C cross-polarization and the effect of 1H and 19F decoupling on spectral resolution and sensitivity were evaluated in a broad range of experimental conditions. We further demonstrate a protocol for measuring accurate interfluorine distances based on 1D DANTE-RFDR experiments combined with multispin numerical simulations.


Subject(s)
Fluorine , Pharmaceutical Preparations , Crystallography , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
16.
Nat Struct Mol Biol ; 27(9): 863-869, 2020 09.
Article in English | MEDLINE | ID: mdl-32901160

ABSTRACT

HIV-1 capsid plays multiple key roles in viral replication, and inhibition of capsid assembly is an attractive target for therapeutic intervention. Here, we report the atomic-resolution structure of capsid protein (CA) tubes, determined by magic-angle spinning NMR and data-guided molecular dynamics simulations. Functionally important regions, including the NTD ß-hairpin, the cyclophilin A-binding loop, residues in the hexamer central pore, and the NTD-CTD linker region, are well defined. The structure of individual CA chains, their arrangement in the pseudo-hexameric units of the tube and the inter-hexamer interfaces are consistent with those in intact capsids and substantially different from the organization in crystal structures, which feature flat hexamers. The inherent curvature in the CA tubes is controlled by conformational variability of residues in the linker region and of dimer and trimer interfaces. The present structure reveals atomic-level detail in capsid architecture and provides important guidance for the design of novel capsid inhibitors.


Subject(s)
Capsid Proteins/chemistry , Capsid/chemistry , HIV Infections/virology , HIV-1/chemistry , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Multimerization
17.
J Magn Reson ; 311: 106680, 2020 02.
Article in English | MEDLINE | ID: mdl-31951864

ABSTRACT

Despite breakthroughs in MAS NMR hardware and experimental methodologies, sensitivity remains a major challenge for large and complex biological systems. Here, we report that 3-4 fold higher sensitivities can be obtained in heteronuclear-detected experiments, using a novel HCN CPMAS probe, where the sample coil and the electronics operate at cryogenic temperatures, while the sample is maintained at ambient temperatures (BioSolids CryoProbe™). Such intensity enhancements permit recording 2D and 3D experiments that are otherwise time-prohibitive, such as 2D 15N-15N proton-driven spin diffusion and 15N-13C double cross polarization to natural abundance carbon experiments. The benefits of CPMAS CryoProbe-based experiments are illustrated for assemblies of kinesin Kif5b with microtubules, HIV-1 capsid protein assemblies, and fibrils of human Y145Stop and fungal HET-s prion proteins - demanding systems for conventional MAS solid-state NMR and excellent reference systems in terms of spectral quality. We envision that this probe technology will be beneficial for a wide range of applications, especially for biological systems suffering from low intrinsic sensitivity and at physiological temperatures.


Subject(s)
Hydrogen Cyanide/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Capsid Proteins/chemistry , Carbon/chemistry , Cold Temperature , Escherichia coli/chemistry , Fungi/chemistry , HIV-1/chemistry , Humans , Indicators and Reagents , Kinesins/chemistry , Microscopy, Electron, Transmission , Microtubules/chemistry , Microtubules/ultrastructure , Prion Proteins/chemistry , Sensitivity and Specificity , Temperature
18.
Mol Pharm ; 17(2): 674-682, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31891271

ABSTRACT

Magic angle spinning (MAS) NMR is a powerful method for the study of pharmaceutical compounds, and probes with spinning frequencies above 100 kHz enable an atomic-resolution analysis of sub-micromole quantities of fully protonated solids. Here, we present an ultrafast NMR crystallography approach for structural characterization of organic solids at MAS frequencies of 100-111 kHz. We assess the efficiency of 1H-detected experiments in the solid state and demonstrate the utility of 2D and 3D homo- and heteronuclear correlation spectra for resonance assignments. These experiments are demonstrated for an amino acid, U-13C,15N-histidine, and also for the significantly larger, natural product Posaconazole, an antifungal compound investigated at natural abundance. Our results illustrate the power for characterizing organic molecules, enabled by exploiting the increased 1H resolution and sensitivity at MAS frequencies above 100 kHz.


Subject(s)
Antifungal Agents/chemistry , Histidine/chemistry , Proton Magnetic Resonance Spectroscopy/methods , Triazoles/chemistry , Carbon Isotopes , Crystallography, X-Ray/methods , Hydrogen/chemistry , Hydrogen Bonding , Magnetic Resonance Imaging/methods , Nitrogen Isotopes , Protons
19.
Magn Reson Chem ; 58(11): 1010-1017, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31469449

ABSTRACT

We report 43 Ca and 13 C solid-state nuclear magnetic resonance (NMR) spectroscopic studies of the ethylene glycol solvate of atorvastatin calcium. The 13 C and 43 Ca chemical shift and 43 Ca quadrupolar coupling tensor parameters are reported. The results are interpreted in terms of the reported X-ray diffraction crystal structure of the solvate and are compared with the NMR parameters of atorvastatin calcium trihydrate, the active pharmaceutical ingredient in Lipitor®. Hartree-Fock and density functional theory calculations of the NMR parameters based on a cluster model derived from the optimized X-ray diffraction crystal structure of the ethylene glycol solvate of atorvastatin calcium are in reasonable agreement with the experimental 43 Ca and 13 C NMR measurables.


Subject(s)
Atorvastatin/chemistry , Ethylene Glycol/chemistry , Calcium Isotopes , Carbon Isotopes , Crystallography, X-Ray , Magnetic Resonance Spectroscopy/standards , Models, Molecular , Molecular Structure , Reference Standards
20.
J Phys Chem B ; 123(50): 10680-10690, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31682453

ABSTRACT

Long-range interatomic distance restraints are critical for the determination of molecular structures by NMR spectroscopy, both in solution and in the solid state. Fluorine is a powerful NMR probe in a wide variety of contexts, owing to its favorable magnetic properties, ease of incorporation into biological molecules, and ubiquitous use in synthetic organic molecules designed for diverse applications. Because of the large gyromagnetic ratio of the 100% naturally abundant 19F isotope, interfluorine distances as long as 20 Å are accessible in magic-angle spinning (MAS) dipolar recoupling experiments. Herein, we present an approach for the determination of accurate interfluorine distances in multispin systems, using the finite pulse radio frequency driven recoupling (fpRFDR) at high MAS frequencies of 40-60 kHz. We use a series of crystalline "molecular ruler" solids, difluorobenzoic acids and 7F-L-tryptophan, for which the intra- and intermolecular interfluorine distances are known. We describe the optimal experimental conditions for accurate distance determinations, including the choice of a phase cycle, the relative advantages of selective inversion one-dimensional versus two-dimensional correlation experiments, and the appropriate numerical simulation protocols. An optimal strategy for the analysis of RFDR exchange curves in organic solids with extended spin interaction networks is presented, which, even in the absence of crystal structures, can be potentially incorporated into NMR structure determination.


Subject(s)
Fluorine/chemistry , Magnetic Resonance Spectroscopy , Organic Chemicals/chemistry , Crystallography, X-Ray , Density Functional Theory , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...