Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Biomater Sci ; 12(11): 2978-2992, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38683548

ABSTRACT

Inhalable nanomedicines are increasingly being developed to optimise the pharmaceutical treatment of respiratory diseases. Large lipid-based nanosystems at the forefront of the inhalable nanomedicines development pipeline, though, have a number of limitations. The objective of this study was, therefore, to investigate the utility of novel small lipidated sulfoxide polymers based on poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA) as inhalable drug delivery platforms with tuneable membrane permeability imparted by differential albumin binding kinetics. Linear PMSEA (5 kDa) was used as a hydrophilic polymer backbone with excellent anti-fouling and stealth properties compared to poly(ethylene glycol). Terminal lipids comprising single (1C2, 1C12) or double (2C12) chain diglycerides were installed to provide differing affinities for albumin and, by extension, albumin trafficking pathways in the lungs. Albumin binding kinetics, cytotoxicity, lung mucus penetration and cellular uptake and permeability through key cellular barriers in the lungs were examined in vitro. The polymers showed good mucus penetration and no cytotoxicity over 24 h at up to 1 mg ml-1. While 1C2-showed no interaction with albumin, 1C12-PMSEA and 2C12-PMSEA bound albumin with KD values of approximately 76 and 10 µM, respectively. Despite binding to albumin, 2C12-PMSEA showed reduced cell uptake and membrane permeability compared to the smaller polymers and the presence of albumin had little effect on cell uptake and membrane permeability. While PMSEA strongly shielded these lipids from albumin, the data suggest that there is scope to tune the lipid component of these systems to control membrane permeability and cellular interactions in the lungs to tailor drug disposition in the lungs.


Subject(s)
Lipids , Humans , Animals , Lipids/chemistry , Polymers/chemistry , Administration, Inhalation , Drug Delivery Systems , Albumins/chemistry , Albumins/metabolism , Lung/metabolism , Protein Binding , Drug Carriers/chemistry
2.
mSystems ; 9(5): e0009324, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38606960

ABSTRACT

The increasing resistance of clinically relevant microbes against current commercially available antimicrobials underpins the urgent need for alternative and novel treatment strategies. Cationic lipidated oligomers (CLOs) are innovative alternatives to antimicrobial peptides and have reported antimicrobial potential. An understanding of their antimicrobial mechanism of action is required to rationally design future treatment strategies for CLOs, either in monotherapy or synergistic combinations. In the present study, metabolomics was used to investigate the potential metabolic pathways involved in the mechanisms of antibacterial activity of one CLO, C12-o-(BG-D)-10, which we have previously shown to be effective against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. The metabolomes of MRSA ATCC 43300 at 1, 3, and 6 h following treatment with C12-o-(BG-D)-10 (48 µg/mL, i.e., 3× MIC) were compared to those of the untreated controls. Our findings reveal that the studied CLO, C12-o-(BG-D)-10, disorganized the bacterial membrane as the first step toward its antimicrobial effect, as evidenced by marked perturbations in the bacterial membrane lipids and peptidoglycan biosynthesis observed at early time points, i.e., 1 and 3 h. Central carbon metabolism and the biosynthesis of DNA, RNA, and arginine were also vigorously perturbed, mainly at early time points. Moreover, bacterial cells were under osmotic and oxidative stress across all time points, as evident by perturbations of trehalose biosynthesis and pentose phosphate shunt. Overall, this metabolomics study has, for the first time, revealed that the antimicrobial action of C12-o-(BG-D)-10 may potentially stem from the dysregulation of multiple metabolic pathways.IMPORTANCEAntimicrobial resistance poses a significant challenge to healthcare systems worldwide. Novel anti-infective therapeutics are urgently needed to combat drug-resistant microorganisms. Cationic lipidated oligomers (CLOs) show promise as new antibacterial agents against Gram-positive pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Understanding their molecular mechanism(s) of antimicrobial action may help design synergistic CLO treatments along with monotherapy. Here, we describe the first metabolomics study to investigate the killing mechanism(s) of CLOs against MRSA. The results of our study indicate that the CLO, C12-o-(BG-D)-10, had a notable impact on the biosynthesis and organization of the bacterial cell envelope. C12-o-(BG-D)-10 also inhibits arginine, histidine, central carbon metabolism, and trehalose production, adding to its antibacterial characteristics. This work illuminates the unique mechanism of action of C12-o-(BG-D)-10 and opens an avenue to design innovative antibacterial oligomers/polymers for future clinical applications.


Subject(s)
Anti-Bacterial Agents , Metabolomics , Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/drug effects , Metabolomics/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Cations/chemistry , Cations/metabolism , Cations/pharmacology
3.
Nanoscale ; 16(19): 9348-9360, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38651870

ABSTRACT

Understanding nanoparticle-cell interaction is essential for advancing research in nanomedicine and nanotoxicology. Apart from the transcytotic pathway mediated by cellular recognition and energetics, nanoparticles (including nanomedicines) may harness the paracellular route for their transport by inducing endothelial leakiness at cadherin junctions. This phenomenon, termed as NanoEL, is correlated with the physicochemical properties of the nanoparticles in close association with cellular signalling, membrane mechanics, as well as cytoskeletal remodelling. However, nanoparticles in biological systems are transformed by the ubiquitous protein corona and yet the potential effect of the protein corona on NanoEL remains unclear. Using confocal fluorescence microscopy, biolayer interferometry, transwell, toxicity, and molecular inhibition assays, complemented by molecular docking, here we reveal the minimal to significant effects of the anionic human serum albumin and fibrinogen, the charge neutral immunoglobulin G as well as the cationic lysozyme on negating gold nanoparticle-induced endothelial leakiness in vitro and in vivo. This study suggests that nanoparticle-cadherin interaction and hence the extent of NanoEL may be partially controlled by pre-exposing the nanoparticles to plasma proteins of specific charge and topology to facilitate their biomedical applications.


Subject(s)
Cadherins , Fibrinogen , Gold , Metal Nanoparticles , Protein Corona , Protein Corona/chemistry , Protein Corona/metabolism , Humans , Cadherins/metabolism , Cadherins/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Fibrinogen/chemistry , Fibrinogen/metabolism , Animals , Human Umbilical Vein Endothelial Cells , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Muramidase/chemistry , Muramidase/metabolism , Molecular Docking Simulation , Mice
4.
J Control Release ; 369: 146-162, 2024 May.
Article in English | MEDLINE | ID: mdl-38513730

ABSTRACT

Delivery to peripheral lymphatics can be achieved following interstitial administration of nano-sized delivery systems (nanoparticles, liposomes, dendrimers etc) or molecules that hitchhike on endogenous nano-sized carriers (such as albumin). The published work concerning the hitchhiking approach has mostly focussed on the lymphatic uptake of vaccines conjugated directly to albumin binding moieties (ABMs such as lipids, Evans blue dye derivatives or peptides) and their subsequent trafficking into draining lymph nodes. The mechanisms underpinning access and transport of these constructs into lymph fluid, including potential interaction with other endogenous nanocarriers such as lipoproteins, have largely been ignored. Recently, we described a series of brush polyethylene glycol (PEG) polymers containing end terminal short-chain or medium-chain hydrocarbon tails (1C2 or 1C12, respectively), cholesterol moiety (Cho), or medium-chain or long-chain diacylglycerols (2C12 or 2C18, respectively). We evaluated the association of these materials with albumin and lipoprotein in rat plasma, and their intravenous (IV) and subcutaneous (SC) pharmacokinetic profiles. Here we fully detail the association of this suite of polymers with albumin and lipoproteins in rat lymph, which is expected to facilitate lymph transport of the materials from the SC injection site. Additionally, we characterise the thoracic lymph uptake, tissue and lymph node biodistribution of the lipidated brush PEG polymers following SC administration to thoracic lymph cannulated rats. All polymers had moderate lymphatic uptake in rats following SC dosing with the lymph uptake higher for 1C2-PEG, 2C12-PEG and 2C18-PEG (5.8%, 5.9% and 6.7% dose in lymph, respectively) compared with 1C12-PEG and Cho-PEG (both 1.5% dose in lymph). The enhanced lymph uptake of 1C2-PEG, 2C12-PEG and 2C18-PEG appeared related to their association profile with different lipoproteins. The five polymers displayed different biodistribution patterns in major organs and tissues in mice. All polymers reached immune cells deep within the inguinal lymph nodes of mice following SC dosing. The ability to access these immune cells suggests the potential of the polymers as platforms for the delivery of vaccines and immunotherapies. Future studies will focus on evaluating the lymphatic targeting and therapeutic potential of drug or vaccine-loaded polymers in pre-clinical disease models.


Subject(s)
Polyethylene Glycols , Animals , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Tissue Distribution , Male , Rats, Sprague-Dawley , Lipids/chemistry , Lymph Nodes/metabolism , Lymph/metabolism , Mice , Rats , Albumins/administration & dosage , Albumins/pharmacokinetics , Lipoproteins/pharmacokinetics , Lipoproteins/administration & dosage , Female
5.
Expert Opin Drug Deliv ; 21(1): 151-167, 2024.
Article in English | MEDLINE | ID: mdl-38248870

ABSTRACT

OBJECTIVES: Nanomedicines are being actively developed as inhalable drug delivery systems. However, there is a distinct utility in developing smaller polymeric systems that can bind albumin in the lungs. We therefore examined the pulmonary pharmacokinetic behavior of a series of lipidated brush-PEG (5 kDa) polymers conjugated to 1C2, 1C12 lipid or 2C12 lipids. METHODS: The pulmonary pharmacokinetics, patterns of lung clearance and safety of polymers were examined in rats. Permeability through monolayers of primary human alveolar epithelia, small airway epithelia and lung microvascular endothelium were also investigated, along with lung mucus penetration and cell uptake. RESULTS: Polymers showed similar pulmonary pharmacokinetic behavior and patterns of lung clearance, irrespective of lipid molecular weight and albumin binding capacity, with up to 30% of the dose absorbed from the lungs over 24 h. 1C12-PEG showed the greatest safety in the lungs. Based on its larger size, 2C12-PEG also showed the lowest mucus and cell membrane permeability of the three polymers. While albumin had no significant effect on membrane transport, the cell uptake of C12-conjugated PEGs were increased in alveolar epithelial cells. CONCLUSION: Lipidated brush-PEG polymers composed of 1C12 lipid may provide a useful and novel alternative to large nanomaterials as inhalable drug delivery systems.


Subject(s)
Polyethylene Glycols , Polymers , Rats , Humans , Animals , Polymers/chemistry , Polyethylene Glycols/chemistry , Molecular Weight , Drug Delivery Systems , Lung/metabolism , Lipids/chemistry , Albumins/metabolism
6.
Acta Biomater ; 174: 191-205, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38086497

ABSTRACT

Polymeric prodrugs have been applied to control the delivery of various types of therapeutics. Similarly, conjugation of peptide therapeutics to lipids has been used to prolong systemic exposure. Here, we extend on these two approaches by conjugating brush polyethylene glycol (PEG) polymers with different lipid components including short-chain (1C2) or medium-chain (1C12) monoalkyl hydrocarbon tails, cholesterol (Cho), and diacylglycerols composed of two medium-chain (2C12) or long-chain (2C18) fatty acids. We uniquely evaluate the integration of these lipid-polymers into endogenous lipid trafficking pathways (albumin and lipoproteins) and the impact of lipid conjugation on plasma pharmacokinetics after intravenous (IV) and subcutaneous (SC) dosing to cannulated rats. The IV and SC elimination half-lives of Cho-PEG (13 and 22 h, respectively), 2C12-PEG (11 and 17 h, respectively) and 2C18-PEG (12 h for both) were prolonged compared to 1C2-PEG (3 h for both) and 1C12-PEG (4 h for both). Interestingly, 1C2-PEG and 1C12-PEG had higher SC bioavailability (40 % and 52 %, respectively) compared to Cho-PEG, 2C12-PEG and 2C18-PEG (25 %, 24 % and 23 %, respectively). These differences in pharmacokinetics may be explained by the different association patterns of the polymers with rat serum albumin (RSA), bovine serum albumin (BSA) and lipoproteins. For example, in pooled plasma (from IV pharmacokinetic studies), 2C18-PEG had the highest recovery in the high-density lipoprotein (HDL) fraction. In conclusion, the pharmacokinetics of brush PEG polymers can be tuned via conjugation with different lipids, which can be utilised to tune the elimination half-life, biodistribution and effect of therapeutics for a range of medical applications. STATEMENT OF SIGNIFICANCE: Lipidation of therapeutics such as peptides has been employed to extend their plasma half-life by promoting binding to serum albumin, providing protection against rapid clearance. Here we design and evaluate innovative biomaterials consisting of brush polyethylene glycol polymers conjugated with different lipids. Importantly, we show for the first time that lipidated polymeric materials associate with endogenous lipoprotein trafficking pathways and this, in addition to albumin binding, controls their plasma pharmacokinetics. We find that conjugation to dialkyl lipids and cholesterol leads to higher association with lipid trafficking pathways, and more sustained plasma exposure, compared to conjugation to short and monoalkyl lipids. Our lipidated polymers can thus be utilised as delivery platforms to tune the plasma half-life of various pharmaceuticals.


Subject(s)
Polyethylene Glycols , Polymers , Rats , Animals , Polyethylene Glycols/pharmacology , Tissue Distribution , Half-Life , Peptides/pharmacology , Lipoproteins, HDL , Cholesterol , Serum Albumin, Bovine/pharmacology
7.
Angew Chem Int Ed Engl ; 63(4): e202315297, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37945544

ABSTRACT

Tailoring the hydrophobicity of supramolecular assembly building blocks enables the fabrication of well-defined functional materials. However, the selection of building blocks used in the assembly of metal-phenolic networks (MPNs), an emerging supramolecular assembly platform for particle engineering, has been essentially limited to hydrophilic molecules. Herein, we synthesized and applied biscatechol-functionalized hydrophobic polymers (poly(methyl acrylate) (PMA) and poly(butyl acrylate) (PBA)) as building blocks to engineer MPN particle systems (particles and capsules). Our method allowed control over the shell thickness (e.g., between 10 and 21 nm), stiffness (e.g., from 10 to 126 mN m-1 ), and permeability (e.g., 28-72 % capsules were permeable to 500 kDa fluorescein isothiocyanate-dextran) of the MPN capsules by selection of the hydrophobic polymer building blocks (PMA or PBA) and by controlling the polymer concentration in the MPN assembly solution (0.25-2.0 mM) without additional/engineered assembly processes. Molecular dynamics simulations provided insights into the structural states of the hydrophobic building blocks during assembly and mechanism of film formation. Furthermore, the hydrophobic MPNs facilitated the preparation of fluorescent-labeled and bioactive capsules through postfunctionalization and also particle-cell association engineering by controlling the hydrophobicity of the building blocks. Engineering MPN particle systems via building block hydrophobicity is expected to expand their use.

8.
ACS Appl Mater Interfaces ; 15(6): 7777-7792, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36724494

ABSTRACT

The aggregation of amyloid beta (Aß) is a hallmark of Alzheimer's disease (AD), a major cause of dementia and an unmet challenge in modern medicine. In this study, we constructed a biocompatible metal-phenolic network (MPN) comprising a polyphenol epigallocatechin gallate (EGCG) scaffold coordinated by physiological Zn(II). Upon adsorption onto gold nanoparticles, the MPN@AuNP nanoconstruct elicited a remarkable potency against the amyloid aggregation and toxicity of Aß in vitro. The superior performance of MPN@AuNP over EGCG@AuNP was attributed to the porosity and hence larger surface area of the MPN in comparison with that of EGCG alone. The atomic detail of Zn(II)-EGCG coordination was unraveled by density functional theory calculations and the structure and dynamics of Aß aggregation modulated by the MPN were further examined by discrete molecular dynamics simulations. As MPN@AuNP also displayed a robust capacity to cross a blood-brain barrier model through the paracellular pathway, and given the EGCG's function as an anti-amyloidosis and antioxidation agent, this MPN-based strategy may find application in regulating the broad AD pathology beyond protein aggregation inhibition.


Subject(s)
Alzheimer Disease , Catechin , Metal Nanoparticles , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Catechin/pharmacology , Catechin/chemistry , Gold/pharmacology , Zinc/chemistry
10.
Biomacromolecules ; 24(1): 387-399, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36469858

ABSTRACT

Herein, we report a platform to integrate customizable quantities of catechol units into polymers by reacting caffeic acid carbonic anhydride with polymers having pendant amine groups. Brush poly(ethylene glycol)-caffeamide (PEG-CAF) copolymers based on oligo(ethylene glycol)methyl ether methacrylate (OEGMA500) were obtained with a catechol content of approximately 30, 40, and 50 mol % (vs OEGMA content). Owing to the hydrophobicity of the introduced CAF groups, the catechol copolymers exhibited cloud points in the range of 23-46 °C and were used to fabricate thermoresponsive FeIII metal-phenolic network capsules. Polymers with the highest CAF content (50 mol %) proved most effective for attenuating reactive oxygen species levels in vitro, in co-cultured fibroblasts, and breast cancer cells, even in the presence of an exogenous oxidant source. The reported approach to synthesize customizable catechol materials could be generalized to other amine-functional polymers, with potential biomedical applications such as adhesives or stimuli-responsive drug delivery systems.


Subject(s)
Polyethylene Glycols , Polymers , Polymers/pharmacology , Ferric Compounds , Catechols , Oxidative Stress
11.
Biomaterials ; 285: 121536, 2022 06.
Article in English | MEDLINE | ID: mdl-35533442

ABSTRACT

Soft polymer nanoparticles designed to disassemble and release an antagonist of the neurokinin 1 receptor (NK1R) in endosomes provide efficacious yet transient relief from chronic pain. These micellar nanoparticles are unstable and rapidly release cargo, which may limit the duration of analgesia. We examined the efficacy of stable star polymer nanostars containing the NK1R antagonist aprepitant-amine for the treatment of chronic pain in mice. Nanostars continually released cargo for 24 h, trafficked through the endosomal system, and disrupted NK1R endosomal signaling. After intrathecal injection, nanostars accumulated in endosomes of spinal neurons. Nanostar-aprepitant reversed mechanical, thermal and cold allodynia and normalized nociceptive behavior more efficaciously than free aprepitant in preclinical models of neuropathic and inflammatory pain. Analgesia was maintained for >10 h. The sustained endosomal delivery of antagonists from slow-release nanostars provides effective and long-lasting reversal of chronic pain.


Subject(s)
Chronic Pain , Neurokinin-1 Receptor Antagonists , Animals , Aprepitant/pharmacology , Aprepitant/therapeutic use , Chronic Pain/drug therapy , Endosomes , Mice , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Polymers/pharmacology
12.
J Colloid Interface Sci ; 613: 218-223, 2022 May.
Article in English | MEDLINE | ID: mdl-35033767

ABSTRACT

Hydrogen sulfide (H2S) is an important signalling molecule with potential pharmaceutical applications. In pursuit of a suitable delivery system for H2S, herein we apply an amphiphilic trisulfide to concomitantly alter the mesophase behaviour of dispersed lipid particles and enable triggered H2S release. Amperometric release studies indicate the trisulfide acts as a sustained H2S donor, with inclusion into the mesophase attenuating release vs neat dispersed trisulfide. Taken together the results highlight the potential for including trisulfide-based additives in stimuli-responsive drug delivery vehicles.


Subject(s)
Hydrogen Sulfide , Liquid Crystals , Pharmaceutical Preparations , Drug Delivery Systems , Sulfhydryl Compounds
13.
J Am Chem Soc ; 144(1): 503-514, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34958559

ABSTRACT

Dynamic nanostructured materials that can react to physical and chemical stimuli have attracted interest in the biomedical and materials science fields. Metal-phenolic networks (MPNs) represent a modular class of such materials: these networks form via coordination of phenolic molecules with metal ions and can be used for surface and particle engineering. To broaden the range of accessible MPN properties, we report the fabrication of thermoresponsive MPN capsules using FeIII ions and the thermoresponsive phenolic building block biscatechol-functionalized poly(N-isopropylacrylamide) (biscatechol-PNIPAM). The MPN capsules exhibited reversible changes in capsule size and shell thickness in response to temperature changes. The temperature-induced capsule size changes were influenced by the chain length of biscatechol-PNIPAM and catechol-to-FeIII ion molar ratio. The metal ion type also influenced the capsule size changes, allowing tuning of the MPN capsule mechanical properties. AlIII-based capsules, having a lower stiffness value (10.7 mN m-1), showed a larger temperature-induced size contraction (∼63%) than TbIII-based capsules, which exhibit a higher stiffness value (52.6 mN m-1) and minimal size reduction (<1%). The permeability of the MPN capsules was controlled by changing the temperature (25-50 °C)─a reduced permeability was obtained as the temperature was increased above the lower critical solution temperature of biscatechol-PNIPAM. This temperature-dependent permeability behavior was exploited to encapsulate and release model cargo (500 kDa fluorescein isothiocyanate-tagged dextran) from the capsules; approximately 70% was released over 90 min at 25 °C. This approach provides a synthetic strategy for developing dynamic and thermoresponsive-tunable MPN systems for potential applications in biological science and biotechnology.

14.
Adv Drug Deliv Rev ; 179: 114005, 2021 12.
Article in English | MEDLINE | ID: mdl-34687822

ABSTRACT

In addition to being notorious air pollutants, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have also been known as endogenous gaseous signaling molecules (GSMs). These GSMs play critical roles in maintaining the homeostasis of living organisms. Importantly, the occurrence and development of many diseases such as inflammation and cancer are highly associated with the concentration changes of GSMs. As such, GSMs could also be used as new therapeutic agents, showing great potential in the treatment of many formidable diseases. Although clinically it is possible to directly inhale GSMs, the precise control of the dose and concentration for local delivery of GSMs remains a substantial challenge. The development of gaseous signaling molecule-releasing molecules provides a great tool for the safe and convenient delivery of GSMs. In this review article, we primarily focus on the recent development of macromolecular nanocarriers for the local delivery of various GSMs. Learning from the chemistry of small molecule-based donors, the integration of these gaseous signaling molecule-releasing molecules into polymeric matrices through physical encapsulation, post-modification, or direct polymerization approach renders it possible to fabricate numerous macromolecular nanocarriers with optimized pharmacokinetics and pharmacodynamics, revealing improved therapeutic performance than the small molecule analogs. The development of GSMs represents a new means for many disease treatments with unique therapeutic outcomes.


Subject(s)
Drug Carriers/chemistry , Gasotransmitters/administration & dosage , Gasotransmitters/pharmacology , Macromolecular Substances/chemistry , Nanoparticle Drug Delivery System/chemistry , Carbon Monoxide/metabolism , Drug Stability , Humans , Hydrogen Sulfide/metabolism , Hydrogen-Ion Concentration , Nitric Oxide/metabolism
15.
J Mater Chem B ; 9(37): 7805-7820, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34586131

ABSTRACT

The limited application of traditional antioxidants to reducing elevated levels of reactive oxygen species (ROS) is potentially due to their lack of stability and biocompatibility when tested in a biological milieu. For instance, the poor biological antioxidant performance of small molecular nitroxides arises from their limited diffusion across cell membranes and their significant side effects when applied at high doses. Herein, we describe the use of nanostructured carriers to improve the antioxidant activity of a typical nitroxide derivative, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). Polymers with star-shaped structures were synthesised and were further conjugated to TEMPO moieties via amide linkages. The TEMPO-loaded stars have small hydrodynamic sizes (<20 nm), and are better tolerated by cells than free TEMPO in a breast cancer-fibroblast co-culture, a system exhibiting elevated ROS levels. At a well-tolerated concentration, the polymer with the highest TEMPO-loading capacity successfully downregulated ROS production in co-cultured cells (a significant decrease of up to 50% vs. basal ROS levels), which was accompanied by a specific reduction in superoxide anion generation in the mitochondria. In contrast, the equivalent concentration of free TEMPO did not achieve the same outcome. Further investigation showed that the TEMPO-conjugated star polymers can be recycled inside the cells, thus providing longer term scavenging activity. Cell association studies demonstrated that the polymers can be taken up by both cell types in the co-culture, and are found to co-locate with the mitochondria. Interestingly the stars exhibited preferential mitochodria targeting in the co-cultured cancer cells compared to accompanying fibroblasts. The data suggest the potential of TEMPO-conjugated star polymers to arrest oxidative stress for various applications in cancer therapy.


Subject(s)
Cyclic N-Oxides/chemistry , Nanostructures/chemistry , Oxidative Stress , Polyethylene Glycols/chemistry , Antioxidants/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Coculture Techniques , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism
16.
Drug Deliv Transl Res ; 11(4): 1586-1597, 2021 08.
Article in English | MEDLINE | ID: mdl-33713317

ABSTRACT

Infections caused by fungal biofilms with rapidly evolving resistance against the available antifungal agents are difficult to manage. These difficulties demand new strategies for effective eradication of biofilms from both biological and inert surfaces. In this study, polymeric micelles comprised of di-block polymer, poly-(ethylene glycol) methyl ether methacrylate and poly 2-(N,N-diethylamino) ethyl methacrylate polymer, P(PEGMA-b-DEAEMA), were observed to exhibit remarkable inhibitory effects on hyphal growth of Candida albicans (C. albicans) and C. tropicalis, thus preventing biofilm formation and removing existing biofilms. P(PEGMA-b-DEAEMA) micelles showed biofilm removal efficacy of > 40% and a 1.4-log reduction in cell viability of C. albicans in its single-species biofilms. In addition, micelles alone promoted high removal percentage in a mixed biofilm of C. albicans and C. tropicalis (~ 70%) and remarkably reduced cell viability of both strains. Co-delivery of fluconazole (Flu) and amphotericin B (AmB) with micelles showed synergistic effects on C. albicans biofilms (3-log reduction for AmB and 2.2-log reduction for Flu). Similar effects were noted on C. albicans planktonic cells when treated with the micellar system combined with AmB but not with Flu. Moreover, micelle-drug combinations showed an enhancement in the antibiofilm activity of Flu and AmB against dual-species biofilms. Furthermore, in vivo studies using Caenorhabditis elegans nematodes revealed no obvious toxicity of the micelles. Targeting morphologic transitions provides a new strategy for defeating fungal biofilms of polymorphic resistance strains and can be potentially used in counteracting Candida virulence.


Subject(s)
Candida albicans , Micelles , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Biofilms , Fluconazole/pharmacology , Virulence
17.
Biomater Sci ; 9(3): 835-846, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33231231

ABSTRACT

The progression of cancer has been closely-linked with augmentation of cellular reactive oxygen species (ROS) levels and ROS-associated changes in the tumour microenvironment (TME), including alterations to the extracellular matrix and associated low drug uptake. Herein we report the application of a co-culture model to simulate the ROS based cell-cell interactions in the TME using fibroblasts and breast cancer cells, and describe how novel reactive polymers can be used to modulate those interactions. Under the co-culture conditions, both cell types exhibited modifications in behaviour, including significant overproduction of ROS in the cancer cells, and elevation of the collagen-1 secretion and stained actin filament intensity in the fibroblasts. To examine the potential of using reactive antioxidant polymers to intercept ROS communication and thereby manipulate the TME, we employed H2S-releasing macromolecular conjugates which have been previously demonstrated to mitigate ROS production in HEK cells. The specific conjugate used, mPEG-SSS-cholesteryl (T), significantly reduced ROS levels in co-cultured cancer cells by approximately 50%. This reduction was significantly greater than that observed with the other positive antioxidant controls. Exposure to T was also found to downregulate levels of collagen-1 in the co-cultured fibroblasts, while exhibiting less impact on cells in mono-culture. This would suggest a possible downstream effect of ROS-mitigation by T on stromal-tumour cell signalling. Since fibroblast-derived collagens modulate crucial steps in tumorigenesis, this ROS-associated effect could potentially be harnessed to slow cancer progression. The model may also be beneficial for interrogating the impact of antioxidants on naturally enhanced ROS levels, rather than relying on the application of exogenous oxidants to simulate elevated ROS levels.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Coculture Techniques , Collagen , Collagen Type I , Fibroblasts , Humans , Reactive Oxygen Species , Tumor Microenvironment
18.
Biomacromolecules ; 21(12): 5292-5305, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33210534

ABSTRACT

A potential approach to combat cellular dysfunction is to manipulate cell communication and signaling pathways to restore physiological functions while protecting unaffected cells. For instance, delivering the signaling molecule H2S to certain cells has been shown to restore cell viability and re-normalize cell behavior. We have previously demonstrated the ability to incorporate a trisulfide-based H2S-donating moiety into linear polymers with good in vitro releasing profiles and demonstrated their potential for ameliorating oxidative stress. Herein, we report two novel series of brush polymers decorated with higher numbers of H2S-releasing segments. These materials contain two trisulfide-based monomers co-polymerized with oligo(ethylene glycol methyl ether methacrylate) via reversible addition-fragmentation chain-transfer polymerization. The macromolecules were characterized to have a range of trisulfide densities with similar, well-defined molecular weight distribution, good H2S-releasing profiles, and high cellular tolerance. Using an amperometric technique, the H2S liberated and total sulfide release were found to depend on concentrations and chemical nature of triggering molecules (glutathione and cysteine) and, importantly, the position of reactive groups within the brush structure. Notably, when introduced to cells at well-tolerated doses, two macromolecular donors which have the same proportion as of the H2S-donating monomer (30%) but differ in releasing moiety location show similar cellular H2S-releasing kinetics. These donors can restore reactive oxygen species levels to baseline values, when polymer pretreated cells are exposed to exogenous oxidants (H2O2). Our work opens up a new aspect in preparing H2S macromolecule donors and their application to arresting cellular oxidative cascades.


Subject(s)
Hydrogen Sulfide , Hydrogen Peroxide , Oxidative Stress , Polymers , Sulfides
19.
J Control Release ; 327: 117-128, 2020 11 10.
Article in English | MEDLINE | ID: mdl-32771478

ABSTRACT

The lymphatic system plays an integral role in the development and progression of a range of disease conditions, which has impelled medical researchers and clinicians to design, develop and utilize advanced lymphatic drug delivery systems. Following interstitial administration, most therapeutics and molecules are cleared from tissues via the draining blood capillaries. Macromolecules and delivery systems >20 kDa in size or 10-100 nm in diameter are, however, transported from the interstitium via draining lymphatic vessels as they are too large to cross the blood capillary endothelium. Lymphatic uptake of small molecules can be promoted by two general approaches: administration in association with synthetic macromolecular constructs, or through hitchhiking on endogenous cells or macromolecular carriers that are transported from tissues via the lymphatics. In this paper we review the latter approach where molecules are targeted to lymph by hitchhiking on endogenous albumin transport pathways after subcutaneous, intramuscular or intradermal injection. We describe the properties of the lymphatic system and albumin that are relevant to lymphatic targeting, the characteristics of drugs and delivery systems designed to hitchhike on albumin trafficking pathways and how to further optimise these properties, and finally the current applications and potential future directions for albumin-hitchhiking approaches to target the lymphatics.


Subject(s)
Drug Delivery Systems , Lymphatic Vessels , Albumins , Animals , Humans , Lymph , Lymphatic System
20.
J Mater Chem B ; 8(17): 3896-3907, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32227031

ABSTRACT

Inspired by the properties of the naturally occurring H2S donor, diallyl trisulfide (DATS, extracted from garlic), the biological behaviour of trisulfide-bearing PEG-conjugates was explored. Specifically, three conjugates comprising an mPEG tail and a cholesteryl head were investigated: conjugates bridged by a trisulfide linker (T), a disulfide linker (D) or a carbamate linker (C), and a fourth comprising two mPEG tails bridged by a trisulfide linker (P). H2S testing using both a fluorescent chemical probe in HEK293 cells and an amperometric sensor to monitor release in suspended cells, demonstrated the ability of the trisulfide conjugates, T and P, to release H2S in the presence of cellular thiols. Cytotoxicity and cyto-protective capacity on HEK293 cells showed that T was the best tolerated of the conjugates studied, and remarkably more so than D or C. Moreover, it was noted that application of T conferred a protective effect to the cells, effectively abolishing the toxicity associated with co-administered C. The interaction of conjugates and combinations thereof with the cell membrane of HEK cells, as well as ROS generation were also investigated. It was found that C caused significant membrane perturbation, correlating with high losses in cell viability and pronounced generation of ROS, especially in the mitochondria. T, however, did not disturb the membrane and was able to mitigate the generation of ROS, especially in the mitochondria. The interplay of the cholesteryl group and H2S donation for conferring cytoprotective effects was clearly demonstrated as P did not display the same beneficial characteristics as T.


Subject(s)
Allyl Compounds/chemistry , Cholesterol/chemistry , Hydrogen Sulfide/metabolism , Polyethylene Glycols/chemistry , Protective Agents/chemistry , Sulfides/chemistry , Carbamates/chemistry , Cell Survival/drug effects , Garlic/metabolism , Glutathione/chemistry , HEK293 Cells , Humans , Hydrogen Sulfide/chemistry , Microscopy, Fluorescence , Protective Agents/pharmacology , Reactive Oxygen Species/metabolism , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...