Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Biol Lett ; 19(9): 20230287, 2023 09.
Article in English | MEDLINE | ID: mdl-37670611

ABSTRACT

Many vertebrates show lateralized behaviour, or handedness, where an individual preferentially uses one side of the body more than the other. This is generally thought to be caused by brain lateralization and allows functional specializations such as sight, locomotion, and decision-making among other things. We deployed accelerometers on 51 northern gannets, Morus bassanus, to test for behavioural lateralization during plunge dives. When plunge diving, gannets 'roll' to one side, and standard indices indicated that 51% of individuals were left-sided, 43% right-sided, and 6% 'non-lateralized'. Lateralization indices provide no measure of error and do not account for environmental covariance, so we conducted two repeatability analyses on individuals' dive roll direction and angle. Dive side lateralization was highly repeatable among individuals over time at the population level (R = 0.878, p < 0.001). Furthermore, roll angle was also highly repeatable in individuals (R = 0.751, p < 0.001) even after controlling for lateralized state. Gannets show individual specializations in two different parts of the plunge diving process when attempting to catch prey. This is the first demonstration of lateralization during prey capture in a foraging seabird. It is also one of the few demonstrations of behavioural lateralization in a mixed model approach, providing a structure for further exploring behavioural lateralization.


Subject(s)
Diving , Functional Laterality , Humans , Animals , Specialization , Birds , Locomotion
2.
Curr Biol ; 33(19): 4225-4231.e3, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37678252

ABSTRACT

Fisheries waste is used by many seabirds as a supplementary source of food,1 but interacting with fishing vessels to obtain this resource puts birds at risk of entanglement in fishing gear and mortality.2 As a result, bycatch is one of the leading contributors to seabird decline worldwide,3 and this risk may increase over time as birds increasingly associate fishing vessels with food. Light-level geolocators mounted on seabirds can detect light emitted from vessels at night year-round.4 We used a 16-year time series of geolocator data from 296 northern fulmars (Fulmarus glacialis) breeding at temperate and arctic colonies to investigate trends of nocturnal vessel interactions in this scavenging pelagic seabird. Vessel attendance has progressively increased over the study period despite no corresponding increase in the number of vessels or availability of discards over the same time frame. Fulmars are highly mobile generalist surface feeders,5 so this may signal a reduction in available prey biomass in the upper water column, leading to increased reliance on anthropogenic food subsidies6 and increased risk of bycatch mortality in already threatened seabird populations. Individuals were consistent in the extent to which they interacted with vessels, as shown in other species,7 suggesting that population-level increases may be due to a higher proportion of fulmars following vessels rather than changes at an individual level. Higher encounter rates were correlated with lower time spent foraging and a geographically restricted overwintering distribution, suggesting an energetic advantage for these scavenging strategists compared with foraging for natural prey.


Subject(s)
Birds , Conservation of Natural Resources , Humans , Animals , Fisheries , Biomass , Arctic Regions
3.
Proc Biol Sci ; 290(2003): 20231067, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37464752

ABSTRACT

Cognitive flexibility controls how animals respond to changing environmental conditions. Individuals within species vary considerably in cognitive flexibility but the micro-evolutionary potential in animal populations remains enigmatic. One prerequisite for cognitive flexibility to be able to evolve is consistent and heritable among-individual variation. Here we determine the repeatability and heritability of cognitive flexibility among great tits (Parus major) by performing an artificial selection experiment on reversal learning performance using a spatial learning paradigm over three generations. We found low, yet significant, repeatability (R = 0.15) of reversal learning performance. Our artificial selection experiment showed no evidence for narrow-sense heritability of associative or reversal learning, while we confirmed the heritability of exploratory behaviour. We observed a phenotypic, but no genetic, correlation between associative and reversal learning, showing the importance of prior information on reversal learning. We found no correlation between cognitive and personality traits. Our findings emphasize that cognitive flexibility is a multi-faceted trait that is affected by memory and prior experience, making it challenging to retrieve reliable values of temporal consistency and assess the contribution of additive genetic variation. Future studies need to identify what cognitive components underlie variation in reversal learning and study their between-individual and additive genetic components.


Subject(s)
Passeriformes , Reversal Learning , Animals , Passeriformes/genetics , Cognition
4.
Mol Ecol ; 32(12): 3322-3339, 2023 06.
Article in English | MEDLINE | ID: mdl-36906957

ABSTRACT

The gut microbiota have important consequences for host biological processes and there is some evidence that they also affect fitness. However, the complex, interactive nature of ecological factors that influence the gut microbiota has scarcely been investigated in natural populations. We sampled the gut microbiota of wild great tits (Parus major) at different life stages allowing us to evaluate how microbiota varied with respect to a diverse range of key ecological factors of two broad types: (1) host state, namely age and sex, and the life history variables, timing of breeding, fecundity and reproductive success; and (2) the environment, including habitat type, the distance of the nest to the woodland edge, and the general nest and woodland site environments. The gut microbiota varied with life history and the environment in many ways that were largely dependent on age. Nestlings were far more sensitive to environmental variation than adults, pointing to a high degree of flexibility at an important time in development. As nestlings developed their microbiota from one to two weeks of life, they retained consistent (i.e., repeatable) among-individual differences. However these apparent individual differences were driven entirely by the effect of sharing the same nest. Our findings point to important early windows during development in which the gut microbiota are most sensitive to a variety of environmental drivers at multiple scales, and suggest reproductive timing, and hence potentially parental quality or food availability, are linked with the microbiota. Identifying and explicating the various ecological sources that shape an individual's gut bacteria is of vital importance for understanding the gut microbiota's role in animal fitness.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Passeriformes , Animals , Gastrointestinal Microbiome/genetics , Bacteria , Fertility
5.
Ecol Evol ; 12(12): e9579, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36523532

ABSTRACT

Animal-borne telemetry devices provide essential insights into the life-history strategies of far-ranging species and allow us to understand how they interact with their environment. Many species in the seabird family Alcidae undergo a synchronous molt of all primary flight feathers during the non-breeding season, making them flightless and more susceptible to environmental stressors, including severe storms and prey shortages. However, the timing and location of molt remain largely unknown, with most information coming from studies on birds killed by storms or shot by hunters for food. Using light-level geolocators with saltwater immersion loggers, we develop a method for determining flightless periods in the context of the annual cycle. Four Atlantic puffins (Fratercula arctica) were equipped with geolocator/immersion loggers on each leg to attempt to overcome issues of leg tucking in plumage while sitting on the water, which confounds the interpretation of logger data. Light-level and saltwater immersion time-series data were combined to correct for this issue. This approach was adapted and applied to 40 puffins equipped with the standard practice deployments of geolocators on one leg only. Flightless periods consistent with molt were identified in the dual-equipped birds, whereas molt identification in single-equipped birds was less effective and definitive and should be treated with caution. Within the dual-equipped sample, we present evidence for two flightless molt periods per non-breeding season in two puffins that undertook more extensive migrations (>2000 km) and were flightless for up to 77 days in a single non-breeding season. A biannual flight feather molt is highly unusual among non-passerine birds and may be unique to birds that undergo catastrophic molt, i.e., become flightless when molting. Although our conclusions are based on a small sample, we have established a freely available methodological framework for future investigation of the molt patterns of this and other seabird species.

6.
R Soc Open Sci ; 9(1): 210520, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35116139

ABSTRACT

Many animals show sexually divergent foraging behaviours reflecting different physiological constraints or energetic needs. We used a bioenergetics approach to examine sex differences in foraging behaviour of the sexually monomorphic northern gannet. We derived a relationship between dynamic body acceleration and energy expenditure to quantify the energetic cost of prey capture attempts (plunge dives). Fourteen gannets were tracked using GPS, time depth recorders (TDR) and accelerometers. All plunge dives in a foraging trip represented less than 4% of total energy expenditure, with no significant sex differences in expenditure. Despite females undertaking significantly more dives than males, this low energetic cost resulted in no sex differences in overall energy expenditure across a foraging trip. Bayesian stable isotope mixing models based on blood samples highlighted sex differences in diet; however, calorific intake from successful prey capture was estimated to be similar between sexes. Females experienced 10.28% higher energy demands, primarily due to unequal chick provisioning. Estimates show a minimum of 19% of dives have to be successful for females to meet their daily energy requirements, and 26% for males. Our analyses suggest northern gannets show sex differences in foraging behaviour primarily related to dive rate and success rather than the energetic cost of foraging or energetic content of prey.

7.
Learn Behav ; 50(1): 153-166, 2022 03.
Article in English | MEDLINE | ID: mdl-35015239

ABSTRACT

Behavioural flexibility allows animals to adjust to changes in their environment. Although the cognitive processes that explain flexibility have been relatively well studied in psychology, this is less true for animals in the wild. Here we use data collected automatically during self-administered discrimination-learning trials for two passerine species, and during four phases (habituation, initial learning, first reversal and second reversal) in order to decompose sources of consistent among-individual differences in reversal learning, a commonly used measure for cognitive flexibility. First, we found that, as expected, proactive interference was significantly repeatable and had a negative effect on reversal learning, confirming that individuals with poor ability to inhibit returning to a previously rewarded feeder were also slower to reversal learn. Second, to our knowledge for the first time in a natural population, we examined how sampling of non-rewarding options post-learning affected reversal-learning performance. Sampling quantity was moderately repeatable in blue tits but not great tits; sampling bias, the variance in the proportion of visits to each non-rewarded feeder, was not repeatable for either species. Sampling behaviour did not predict variation in reversal-learning speed to any significant extent. Finally, the repeatability of reversal learning was explained almost entirely by proactive interference for blue tits; in great tits, the effects of proactive interference and sampling bias on the repeatability of reversal learning were indistinguishable. Our results highlight the value of proactive interference as a more direct measurement of cognitive flexibility and shed light on how animals respond to changes in their environment.


Subject(s)
Passeriformes , Reversal Learning , Animals , Cognition , Discrimination Learning , Individuality
8.
J Anim Ecol ; 91(2): 320-333, 2022 02.
Article in English | MEDLINE | ID: mdl-34693529

ABSTRACT

Organisms are constantly under selection to respond effectively to diverse, sometimes rapid, changes in their environment, but not all individuals are equally plastic in their behaviour. Although cognitive processes and personality are expected to influence individual behavioural plasticity, the effects reported are highly inconsistent, which we hypothesise is because ecological context is usually not considered. We explored how one type of behavioural plasticity, foraging flexibility, was associated with inhibitory control (assayed using a detour-reaching task) and exploration behaviour in a novel environment (a trait closely linked to the fast-slow personality axis). We investigated how these effects varied across two experimentally manipulated ecological contexts-food value and predation risk. In the first phase of the experiment, we trained great tits Parus major to retrieve high value (preferred) food that was hidden in sand so that this became the familiar food source. In the second phase, we offered them the same familiar hidden food at the same time as a new alternative option that was visible on the surface, which was either high or low value, and under either high or low perceived predation risk. Foraging flexibility was defined as the proportion of choices made during 4-min trials that were for the new alternative food source. Our assays captured consistent differences among individuals in foraging flexibility. Inhibitory control was associated with foraging flexibility-birds with high inhibitory control were more flexible when the alternative food was of high value, suggesting they inhibited the urge to select the familiar food and instead selected the new food option. Exploration behaviour also predicted flexibility-fast explorers were more flexible, supporting the information-gathering hypothesis. This tendency was especially strong under high predation risk, suggesting risk aversion also influenced the observed flexibility because fast explorers are risk prone and the new unfamiliar food was perceived to be the risky option. Thus, both behaviours predicted flexibility, and these links were at least partly dependent on ecological conditions. Our results demonstrate that an executive cognitive function (inhibitory control) and a behavioural assay of a well-known personality axis are both associated with individual variation in the plasticity of a key functional behaviour. That their effects on foraging flexibility were primarily observed as interactions with food value or predation risk treatments also suggest that the population-level consequences of some behavioural mechanisms may only be revealed across key ecological conditions.


Subject(s)
Passeriformes , Animals , Exploratory Behavior , Personality , Phenotype , Predatory Behavior
9.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34234017

ABSTRACT

Heterogeneous selection is often proposed as a key mechanism maintaining repeatable behavioral variation ("animal personality") in wild populations. Previous studies largely focused on temporal variation in selection within single populations. The relative importance of spatial versus temporal variation remains unexplored, despite these processes having distinct effects on local adaptation. Using data from >3,500 great tits (Parus major) and 35 nest box plots situated within five West-European populations monitored over 4 to 18 y, we show that selection on exploration behavior varies primarily spatially, across populations, and study plots within populations. Exploration was, simultaneously, selectively neutral in the average population and year. These findings imply that spatial variation in selection may represent a primary mechanism maintaining animal personalities, likely promoting the evolution of local adaptation, phenotype-dependent dispersal, and nonrandom settlement. Selection also varied within populations among years, which may counteract local adaptation. Our study underlines the importance of combining multiple spatiotemporal scales in the study of behavioral adaptation.


Subject(s)
Animal Migration/physiology , Exploratory Behavior/physiology , Passeriformes/physiology , Animals , Europe , Nonlinear Dynamics
10.
J Anim Ecol ; 90(11): 2497-2509, 2021 11.
Article in English | MEDLINE | ID: mdl-34091901

ABSTRACT

The producer-scrounger game is a key element of foraging ecology in many systems. Producing and scrounging typically covary negatively, but partitioning this covariance into contributions of individual plasticity and consistent between individual differences is key to understanding population-level consequences of foraging strategies. Furthermore, little is known about the role cognition plays in the producer-scrounger game. We investigated the role of cognition in these alternative foraging tactics in wild mixed-species flocks of great tits and blue tits, using a production learning task in which we measured individuals' speed of learning to visit the single feeder in an array that would provide them with a food reward. We also quantified the proportion of individuals' feeds that were scrounges ('proportion scrounged'); scrounging was possible if individuals visited immediately after a previous rewarded visitor. Three learning experiments-initial and two reversal learning-enabled us to estimate the repeatability and covariance of each foraging behaviour. First, we examined whether individuals learned to improve their scrounging success (i.e. whether they obtained food by scrounging when there was an opportunity to do so). Second, we quantified the repeatability of proportion scrounged, and asked whether proportion scrounged affected production learning speed among individuals. Third, we used multivariate analyses to partition within- and among-individual components of covariance between proportion scrounged and production learning speed. Individuals improved their scrounging success over time. Birds with a greater proportion scrounged took longer to learn their own rewarding feeder. Although multivariate analyses showed that covariance between proportion scrounged and learning speed was driven primarily by within-individual variation, that is, by behavioural plasticity, among-individual differences also played a role for blue tits. This is the first demonstration of a cognitive trait influencing producing and scrounging in the same wild system, highlighting the importance of cognition in the use of alternative resource acquisition tactics. The results of our covariance analyses suggest the potential for genetic differences in allocation to alternative foraging tactics, which are likely species- and system-dependent. They also point to the need to control for different foraging tactics when studying individual cognition in the wild.


Subject(s)
Passeriformes , Songbirds , Animals , Cognition , Feeding Behavior , Learning
11.
J Anim Ecol ; 90(4): 989-1003, 2021 04.
Article in English | MEDLINE | ID: mdl-33481278

ABSTRACT

Natal body mass is a key predictor of viability and fitness in many animals. While variation in body mass and therefore juvenile viability may be explained by genetic and environmental factors, emerging evidence points to the gut microbiota as an important factor influencing host health. The gut microbiota is known to change during development, but it remains unclear whether the microbiome predicts fitness, and if it does, at which developmental stage it affects fitness traits. We collected data on two traits associated with fitness in wild nestling great tits Parus major: weight and survival to fledging. We characterised the gut microbiome using 16S rRNA sequencing from nestling faeces and investigated temporal associations between the gut microbiome and fitness traits across development at Day-8 (D8) and Day-15 (D15) post-hatching. We also explored whether particular microbial taxa were 'indicator species' that reflected whether nestlings survived or not. There was no link between mass and microbial diversity on D8 or D15. However, we detected a time-lagged relationship where weight at D15 was negatively associated with the microbial diversity at D8, controlling for weight at D8, therefore reflecting relative weight gain over the intervening period. Indicator species analysis revealed that specificity values were high and fidelity values were low, suggesting that indicator taxa were primarily detected within either the survived or not survived groups, but not always detected in birds that either survived or died. Therefore these indicator taxa may be sufficient, but not necessary for determining either survival or mortality, perhaps owing to functional overlap in microbiota. We highlight that measuring microbiome-fitness relationships at just one time point may be misleading, especially early in life. Instead, microbial-host fitness effects may be best investigated longitudinally to detect critical development windows for key microbiota and host traits associated with neonatal weight. Our findings should inform future hypothesis testing to pinpoint which features of the gut microbial community impact on host fitness, and when during development this occurs. Such confirmatory research will shed light on population level processes and could have the potential to support conservation.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Passeriformes , Animals , Body Weight , RNA, Ribosomal, 16S/genetics
12.
Sci Rep ; 10(1): 20783, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33247162

ABSTRACT

The microbial community in the gut is influenced by environmental factors, especially diet, which can moderate host behaviour through the microbiome-gut-brain axis. However, the ecological relevance of microbiome-mediated behavioural plasticity in wild animals is unknown. We presented wild-caught great tits (Parus major) with a problem-solving task and showed that performance was weakly associated with variation in the gut microbiome. We then manipulated the gut microbiome by feeding birds one of two diets that differed in their relative levels of fat, protein and fibre content: an insect diet (low content), or a seed diet (high content). Microbial communities were less diverse among individuals given the insect compared to those on the seed diet. Individuals were less likely to problem-solve after being given the insect diet, and the same microbiota metrics that were altered as a consequence of diet were also those that correlated with variation in problem solving performance. Although the effect on problem-solving behaviour could have been caused by motivational or nutritional differences between our treatments, our results nevertheless raise the possibility that dietary induced changes in the gut microbiota could be an important mechanism underlying individual behavioural plasticity in wild populations.


Subject(s)
Behavior, Animal/physiology , Diet , Gastrointestinal Microbiome , Passeriformes/microbiology , Passeriformes/physiology , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Animals, Wild/microbiology , Animals, Wild/physiology , Animals, Wild/psychology , Biodiversity , Ecosystem , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Ireland , Male , Problem Solving/physiology , RNA, Ribosomal, 16S/genetics
13.
J Nat Conserv ; 58: 125915, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33071716

ABSTRACT

Human disturbance to wildlife is on the rise and disturbance management is a key activity in conservation. Although disturbance can be controlled with relative ease in nature reserves that are properly resourced and managed by employed staff, most reserves do not fall into this category, and most wildlife exists outside managed reserves entirely. Thus, developing and demonstrating the effectiveness of simple, low-cost approaches to minimising disturbance is an important objective in conservation. In this study we examine the effectiveness of regulatory signs in controlling the behaviour and impacts of visitors on a colonial island-nesting bird, the Northern gannet (Morus bassanus), on an unmanaged island. First, we found that the percentage of successful nests declined with proximity to the disturbed edge of the colony, and was much higher in an undisturbed control area. Second, the number of birds displaced by visitors correlated negatively with the minimum visitor approach distance. Third, visitor proximity to the colony was dramatically reduced in the presence of a regulatory sign in comparison to periods without signs, which resulted in fewer birds being displaced from their nests. Photographers were the only visitor group who didn't always comply with the sign. Our results show that breeding success in a species often thought to be well adapted to human presence, suffers from tourist pressure, and that simple and informative regulatory signs can be a cost-effective way of reducing the disturbance caused by visitors at unmanaged wildlife sites.

14.
R Soc Open Sci ; 7(4): 192107, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32431886

ABSTRACT

Cognition arguably drives most behaviours in animals, but whether and why individuals in the wild vary consistently in their cognitive performance is scarcely known, especially under mixed-species scenarios. One reason for this is that quantifying the relative importance of individual, contextual, ecological and social factors remains a major challenge. We examined how many of these factors, and sources of bias, affected participation and performance, in an initial discrimination learning experiment and two reversal learning experiments during self-administered trials in a population of great tits and blue tits. Individuals were randomly allocated to different rewarding feeders within an array. Participation was high and only weakly affected by age and species. In the initial learning experiment, great tits learned faster than blue tits. Great tits also showed greater consistency in performance across two reversal learning experiments. Individuals assigned to the feeders on the edge of the array learned faster. More errors were made on feeders neighbouring the rewarded feeder and on feeders that had been rewarded in the previous experiment. Our estimates of learning consistency were unaffected by multiple factors, suggesting that, even though there was some influence of these factors on performance, we obtained a robust measure of discrimination learning in the wild.

15.
Science ; 366(6465)2019 11 01.
Article in English | MEDLINE | ID: mdl-31672864

ABSTRACT

Sociability can facilitate mutually beneficial outcomes such as division of labor, cooperative care, and increased immunity, but sociability can also promote negative outcomes, including aggression and coercion. Accumulating evidence suggests that symbiotic microorganisms, specifically the microbiota that reside within the gastrointestinal system, may influence neurodevelopment and programming of social behaviors across diverse animal species. This relationship between host and microbes hints that host-microbiota interactions may have influenced the evolution of social behaviors. Indeed, the gastrointestinal microbiota is used by certain species as a means to facilitate communication among conspecifics. Further understanding of how microbiota influence the brain in nature may be helpful for elucidating the causal mechanisms underlying sociability and for generating new therapeutic strategies for social disorders in humans, such as autism spectrum disorders (ASDs).


Subject(s)
Brain/physiology , Gastrointestinal Microbiome/physiology , Host Microbial Interactions , Social Behavior , Animals , Bacteria/metabolism , Diet , Humans , Immune System/physiology , Interpersonal Relations , Probiotics/therapeutic use , Smell , Social Behavior Disorders/microbiology , Social Behavior Disorders/therapy , Stress, Psychological , Vagus Nerve/physiology
16.
PLoS One ; 14(8): e0221625, 2019.
Article in English | MEDLINE | ID: mdl-31454375

ABSTRACT

Sampling approaches used to census and monitor populations of flora and fauna are diverse, ranging from simple random sampling to complex hierarchal stratified designs. Usually the approach taken is determined by the spatial and temporal distribution of the study population, along with other characteristics of the focal species. Long-term monitoring programs used to assess seabird population trends are facilitated by their high site fidelity, but are often hampered by large and difficult to access colonies, with highly variable densities that require intensive survey. We aimed to determine the sampling effort required to (a) estimate population size with a high degree of confidence, and (b) detect different scenarios of population change in a regionally important species in the Atlantic, the Manx shearwater (Puffinus puffinus). Analyses were carried out using data collected from tape-playback surveys on four islands in the North Atlantic. To explore how sampling effort influenced confidence around abundance estimates, we used the heuristic approach of imagining the areas sampled represented the total population, and bootstrapped varying proportions of subsamples. This revealed that abundance estimates vary dramatically when less than half of all plots (n dependent on the size of the site) is randomly subsampled, leading to an unacceptable lack of confidence in population estimates. Confidence is substantially improved using a multi-stage stratified approach based on previous information on distribution in the colonies. In reality, this could lead to reducing the number of plots required by up to 80%. Furthermore, power analyses suggested that random selection of monitoring plots using a matched pairs approach generates little power to detect overall population changes of 10%, and density-dependent changes as large as 50%, because variation in density between plots is so high. Current monitoring programs have a high probability of failing to detect population-level changes due to inappropriate sampling efforts. Focusing sampling in areas of high density with low plot to plot variance dramatically increases the power to detect year to year population change, albeit at the risk of not detecting increases in low density areas, which may be an unavoidable strategy when resources are limited. We discuss how challenging populations with similar features to seabirds might be censused and monitored most effectively.


Subject(s)
Birds/physiology , Breeding , Nesting Behavior/physiology , Animals , Geography , Ireland , Population Dynamics , Species Specificity , Surveys and Questionnaires , Wales
17.
Biol Lett ; 15(7): 20190208, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31288687

ABSTRACT

Understanding how animals forage is a central objective in ecology. Theory suggests that where food is uniformly distributed, Brownian movement ensures the maximum prey encounter rate, but when prey is patchy, the optimal strategy resembles a Lévy walk where area-restricted search (ARS) is interspersed with commuting between prey patches. Such movement appears ubiquitous in high trophic-level marine predators. Here, we report foraging and diving behaviour in a seabird with a high cost of flight, the Atlantic puffin ( Fratercula arctica), and report a clear lack of Brownian or Levy flight and associated ARS. Instead, puffins foraged using tides to transport them through their feeding grounds. Energetic models suggest the cost of foraging trips using the drift strategy is 28-46% less than flying between patches. We suggest such alternative movement strategies are habitat-specific, but likely to be far more widespread than currently thought.


Subject(s)
Charadriiformes , Diving , Animals , Ecosystem , Feeding Behavior , Food
18.
Trends Ecol Evol ; 34(6): 545-554, 2019 06.
Article in English | MEDLINE | ID: mdl-30902359

ABSTRACT

Understanding the drivers of sociality is a major goal in biology. Individual differences in social connections determine the overall group structure and have consequences for a variety of processes, including if and when individuals acquire information from conspecifics. Effects in the opposite direction, where information acquisition and transmission have consequences for social connections, are also likely to be widespread. However, these effects are typically overlooked. We propose that individuals who successfully learn about their environment become valuable social partners and become highly connected, leading to feedback-based dynamic relationships between social connections and information transmission. These dynamics have the potential to change our understanding of social evolution, including how selection acts on behavior and how sociality influences population-level processes.


Subject(s)
Learning , Social Behavior , Humans
19.
Nat Ecol Evol ; 2(11): 1696-1699, 2018 11.
Article in English | MEDLINE | ID: mdl-30275466

ABSTRACT

Mated pair bonds are integral to many animal societies, yet how individual variation in behaviour influences their formation remains largely unknown. In a population of wild great tits (Parus major), we show that personality shapes pair bonding: proactive males formed stronger pre-breeding pair bonds by meeting their future partners sooner and increasing their relationship strength at a faster rate. As a result, proactive males sampled fewer potential mates. Thus, personality may have important implications for social relationship dynamics and emergent social structure.


Subject(s)
Pair Bond , Songbirds/physiology , Animals , Personality
20.
Article in English | MEDLINE | ID: mdl-30104431

ABSTRACT

Research into proximate and ultimate mechanisms of individual cognitive variation in animal populations is a rapidly growing field that incorporates physiological, behavioural and evolutionary investigations. Recent studies in humans and laboratory animals have shown that the enteric microbial community plays a central role in brain function and development. The 'gut-brain axis' represents a multi-directional signalling system that encompasses neurological, immunological and hormonal pathways. In particular it is tightly linked with the hypothalamic-pituitary-adrenal axis (HPA), a system that regulates stress hormone release and influences brain development and function. Experimental examination of the microbiome through manipulation of diet, infection, stress and exercise, suggests direct effects on cognition, including learning and memory. However, our understanding of these processes in natural populations is extremely limited. Here, we outline how recent advances in predominantly laboratory-based microbiome research can be applied to understanding individual differences in cognition. Experimental manipulation of the microbiome across natal and adult environments will help to unravel the interplay between cognitive variation and the gut microbial community. Focus on individual variation in the gut microbiome and cognition in natural populations will reveal new insight into the environmental and evolutionary constraints that drive individual cognitive variation.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.


Subject(s)
Behavior, Animal , Biological Variation, Individual , Cognition , Gastrointestinal Microbiome , Individuality , Animals , Diet , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...