Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Metab ; 21(1): 65-80, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25565206

ABSTRACT

Macrophages activated by the TLR4 agonist LPS undergo dramatic changes in their metabolic activity. We here show that LPS induces expression of the key metabolic regulator Pyruvate Kinase M2 (PKM2). Activation of PKM2 using two well-characterized small molecules, DASA-58 and TEPP-46, inhibited LPS-induced Hif-1α and IL-1ß, as well as the expression of a range of other Hif-1α-dependent genes. Activation of PKM2 attenuated an LPS-induced proinflammatory M1 macrophage phenotype while promoting traits typical of an M2 macrophage. We show that LPS-induced PKM2 enters into a complex with Hif-1α, which can directly bind to the IL-1ß promoter, an event that is inhibited by activation of PKM2. Both compounds inhibited LPS-induced glycolytic reprogramming and succinate production. Finally, activation of PKM2 by TEPP-46 in vivo inhibited LPS and Salmonella typhimurium-induced IL-1ß production, while boosting production of IL-10. PKM2 is therefore a critical determinant of macrophage activation by LPS, promoting the inflammatory response.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interleukin-1beta/metabolism , Macrophages/metabolism , Pyruvate Kinase/metabolism , Animals , Bone Marrow Cells/cytology , Cells, Cultured , Enzyme Activators/pharmacology , Gene Expression/drug effects , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Interleukin-1beta/genetics , Lipopolysaccharides/toxicity , Macrophage Activation/drug effects , Macrophages/cytology , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Protein Binding , Pyruvate Kinase/chemistry , Pyruvate Kinase/genetics , RNA, Messenger/metabolism , Salmonella typhimurium/physiology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/metabolism
3.
Curr Top Microbiol Immunol ; 380: 145-55, 2014.
Article in English | MEDLINE | ID: mdl-25004817

ABSTRACT

Recent studies have shown an important interplay between Interleukin 10 (IL-10) and microRNAs. IL-10 can be directly post-transcriptionally regulated by several microRNA, including miR-106a, miR-4661, miR-98, miR-27, let7 and miR-1423p/5p. miRNA targeting of IL-10 has been suggested to play a role in autoimmune and inflammatory diseases such as SLE, reperfusion injury and asthma. Another miRNA, miR-21, has been shown to indirectly regulate IL-10 via downregulation of the IL-10 inhibitor PDCD4. The targeting of IL-10 in this way has been linked to host defence modulation by Mycobacterium leprae. Viral miRNAs, such as miR-K12-3 from Kaposi's sarcoma-associated herpesvirus (KSHV), can also decrease IL-10 to promote tumour development. Finally this interplay can operate in a feedback loop, with IL-10 capable of regulating microRNAs, upregulating those that can contribute to exerting the anti-inflammatory response, such as miR-187, and downregulating those that are highly pro-inflammatory, such as miR-155. Understanding the two-way regulation between miRNA and IL-10 is giving rise to new insights into this important cytokine.


Subject(s)
Interleukin-10/physiology , MicroRNAs/physiology , Animals , Humans , Interleukin-10/genetics , Transcription, Genetic
4.
J Biol Chem ; 289(10): 6429-6437, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24407287

ABSTRACT

The apoptosis-associated speck-like protein containing a caspase-activating recruitment domain (ASC) is an essential component of several inflammasomes, multiprotein complexes that regulate caspase-1 activation and inflammation. We report here an interaction between promyelocytic leukemia protein (PML) and ASC. We observed enhanced formation of ASC dimers in PML-deficient macrophages. These macrophages also display enhanced levels of ASC in the cytosol. Furthermore, IL-1ß production was markedly enhanced in these macrophages in response to both NLRP3 and AIM2 inflammasome activation and following bone marrow-derived macrophage infection with herpes simplex virus-1 (HSV-1) and Salmonella typhimurium. Collectively, our data indicate that PML limits ASC function, retaining ASC in the nucleus.


Subject(s)
Cytoskeletal Proteins/metabolism , Inflammasomes/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , CARD Signaling Adaptor Proteins , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Nucleus/metabolism , Cytoskeletal Proteins/genetics , Cytosol/metabolism , DNA-Binding Proteins , HEK293 Cells , Humans , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Nuclear Proteins/genetics , Promyelocytic Leukemia Protein , Protein Multimerization , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics
5.
J Biol Chem ; 289(7): 4316-25, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24362029

ABSTRACT

MicroRNA-155 (miR-155) is highly expressed in many cancers such as B cell lymphomas and myeloid leukemia and inflammatory disorders such as rheumatoid arthritis, atopic dermatitis, and multiple sclerosis. The role of miR-155 as both a promoter of inflammation and an oncogenic agent provides a clear need for miR-155 itself to be stringently regulated. We therefore investigated the transcriptional regulation of miR-155 in response to the respective pro- and anti-inflammatory mediators LPS and IL-10. Bioinformatic analysis revealed Ets binding sites on the miR-155 promoter, and we found that Ets2 is critical for miR-155 induction by LPS. Truncation and mutational analysis of the miR-155 promoter confirmed the role of the Ets2 binding site proximal to the transcription start site for LPS responsiveness. We observed increased binding of Ets2 to the miR-155 promoter and Ets2 deficient mice displayed decreased induction of miR-155 in response to LPS. IL-10 inhibited the induction of Ets2 mRNA and protein by LPS, thereby decreasing Ets2 function on the pri-155 promoter. We have thus identified Ets2 as a key novel regulator in both the positive and negative control of miR-155 in the inflammatory response.


Subject(s)
Lipopolysaccharides/toxicity , MicroRNAs/biosynthesis , Proto-Oncogene Protein c-ets-2/metabolism , Response Elements , Animals , Cell Line , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Interleukin-10/biosynthesis , Interleukin-10/genetics , Mice , MicroRNAs/genetics , Proto-Oncogene Protein c-ets-2/genetics
6.
PLoS One ; 8(8): e74103, 2013.
Article in English | MEDLINE | ID: mdl-23967355

ABSTRACT

B cells signal through both the B cell receptor (BCR) which binds antigens and Toll-like receptors (TLRs) including TLR9 which recognises CpG DNA. Activation of TLR9 synergises with BCR signalling when the BCR and TLR9 co-localise within an auto-phagosome-like compartment. Here we report that Bruton's tyrosine kinase (BTK) is required for synergistic IL6 production and up-regulation of surface expression of MHC-class-II, CD69 and CD86 in primary murine and human B cells. We show that BTK is essential for co-localisation of the BCR and TLR9 within a potential auto-phagosome-like compartment in the Namalwa human B cell line. Downstream of BTK we find that calcium acting via calmodulin is required for this process. These data provide new insights into the role of BTK, an important target for autoimmune diseases, in B cell activation.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , Protein-Tyrosine Kinases/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Toll-Like Receptor 9/metabolism , Agammaglobulinaemia Tyrosine Kinase , Animals , Autoimmunity , Cell Line , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Interleukin-6/biosynthesis , Mice , Mice, Inbred C57BL , Phagosomes/metabolism , Phospholipase C gamma/metabolism , Protein Transport
7.
J Biol Chem ; 288(35): 25066-25075, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23873932

ABSTRACT

In this study we describe a previously unreported function for NFκB2, an NFκB family transcription factor, in antiviral immunity. NFκB2 is induced in response to poly(I:C), a mimic of viral dsRNA. Poly(I:C), acting via TLR3, induces p52-dependent transactivation of a reporter gene in a manner that requires the kinase activity of IκB kinase ε (IKKε) and the transactivating potential of RelA/p65. We identify a novel NFκB2 binding site in the promoter of the transcription factor Sp1 that is required for Sp1 gene transcription activated by poly(I:C). We show that Sp1 is required for IL-15 induction by both poly(I:C) and respiratory syncytial virus, a response that also requires NFκB2 and IKKε. Our study identifies NFκB2 as a target for IKKε in antiviral immunity and describes, for the first time, a role for NFκB2 in the regulation of gene expression in response to viral infection.


Subject(s)
I-kappa B Kinase/immunology , Interleukin-15/metabolism , NF-kappa B p52 Subunit/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/immunology , Sp1 Transcription Factor/immunology , Animals , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , HEK293 Cells , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Interferon Inducers/pharmacology , Interleukin-15/genetics , Mice , Mice, Knockout , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/metabolism , Poly I-C/pharmacology , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/metabolism , Response Elements/genetics , Response Elements/immunology , Sp1 Transcription Factor/biosynthesis , Sp1 Transcription Factor/genetics , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/immunology , Toll-Like Receptor 3/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/immunology , Transcription Factor RelA/metabolism
8.
Int Immunol ; 23(7): 421-5, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21652514

ABSTRACT

Toll-like receptors (TLRs) in the host recognize conserved microbial products and defend against pathogenic attack by initiating an immune response via signalling pathways that lead to an increase in immune and inflammatory gene expression. TLR signalling must be stringently regulated in order to ensure sufficient clearance of pathogens and a timely return to homeostasis after infection. MicroRNAs (miRNAs) are a newly discovered class of gene regulators which bind to the 3' untranslated region of target mRNA and direct their post-transcriptional repression. They are global regulators potentially controlling up to 30% of the human genome. Several miRNAs have been shown to be up-regulated in response to TLR ligands, and many directly target components of the TLR signalling system, revealing a whole extra level of control of TLR signalling which is being extensively researched. The dysregulation of miRNAs may be involved in many inflammatory diseases and cancers and thus merits further investigation. In this review, we focus in on a trio of miRNA which have proven to be key in many immune and inflammatory pathways; miR-155, miR-21 and miR-146.


Subject(s)
MicroRNAs/genetics , MicroRNAs/immunology , Signal Transduction/genetics , Toll-Like Receptors/immunology , Animals , Gene Expression Regulation/immunology , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Inflammation/genetics , Inflammation/immunology , Signal Transduction/immunology
9.
J Biol Chem ; 285(27): 20492-8, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20435894

ABSTRACT

IL-10 is a potent anti-inflammatory cytokine that is crucial for down-regulating pro-inflammatory genes, which are induced by Toll-like receptor (TLR) signaling. In this study, we have examined whether modulation of microRNAs plays a role in the inhibitory effect of IL-10 on TLR4 signaling. Analyzing microRNAs known to be induced by TLR4, we found that IL-10 could inhibit the expression of miR-155 in response to lipopolysaccharide but had no effect on miR-21 or miR-146a. IL-10 inhibited miR-155 transcription from the BIC gene in a STAT3-dependent manner. This inhibitory effect of IL-10 on miR-155 led to an increase in the expression of the miR-155 target, SHIP1. This is the first example of IL-10 playing a role in microRNA function and suggests that through its inhibitory effect on miR-155, IL-10 has the ability to promote anti-inflammatory gene expression.


Subject(s)
Interleukin-10/pharmacology , MicroRNAs/genetics , Toll-Like Receptor 4/physiology , Animals , DNA, Complementary/genetics , Enzyme-Linked Immunosorbent Assay/methods , Genes, Reporter , Humans , Kinetics , Luciferases/genetics , Mice , MicroRNAs/antagonists & inhibitors , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/physiology , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...