Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
J Biol Inorg Chem ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811408

ABSTRACT

The influence of metal ions on the structure of amyloid- ß (Aß) protofibril models was studied through molecular dynamics to explore the molecular mechanisms underlying metal-induced Aß aggregation relevant in Alzheimer's disease (AD). The models included 36-, 48-, and 188-mers of the Aß42 sequence and two disease-modifying variants. Primary structural effects were observed at the N-terminal domain, as it became susceptible to the presence of cations. Specially when ß-sheets predominate, this motif orients N-terminal acidic residues toward one single face of the ß-sheet, resulting in the formation of an acidic region that attracts cations from the media and promotes the folding of the N-terminal region, with implications in amyloid aggregation. The molecular phenotype of the protofibril models based on Aß variants shows that the AD-causative D7N mutation promotes the formation of N-terminal ß-sheets and accumulates more Zn2+, in contrast to the non-amyloidogenic rodent sequence that hinders the ß-sheets and is more selective for Na+ over Zn2+ cations. It is proposed that forming an acidic ß-sheet domain and accumulating cations is a plausible molecular mechanism connecting the elevated affinity and concentration of metals in Aß fibrils to their high content of ß-sheet structure at the N-terminal sequence.

2.
RSC Chem Biol ; 4(12): 974-985, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38033729

ABSTRACT

Metal ions have been implicated in several proteinopathies associated to degenerative and neurodegenerative diseases. While the molecular mechanisms for protein aggregation are still under investigation, recent findings from Cryo-EM point out to polymorphisms in aggregates obtained from patients, as compared to those formed in vitro, suggesting that several factors may impact aggregation in vivo. One of these factors could be the direct binding of metal ions to the proteins engaged in aggregate formation. In this opinion article, three case studies are discussed to address the question of how metal ion binding to a peptide or protein may impact its conformation, folding, and aggregation, and how this may be relevant in understanding the polymorphic nature of the aggregates related to disease. Specifically, the impact of Cu2+ ions in the amyloid aggregation of amyloid-ß and amylin (or IAPP- islet amyloid polypeptide) are discussed and then contrasted to the case of Cu2+-induced non-amyloid aggregation of human lens γ-crystallin proteins. For the intrinsically disordered peptides amyloid-ß and IAPP, the impact of Cu2+ ion binding is highly dependent on the relative location of the metal binding site and the hydrophobic regions involved in ß-sheet folding and amyloid formation. Further structural studies of how Cu2+ binding impacts amyloid aggregation pathways and the molecular structure of the final amyloid fibril, both, in vitro and in vivo, will certainly shed light into the molecular origins of the polymorphisms observed in diseased tissue. Finally, contrasting these cases to that of Cu2+-induced non-amyloid aggregation of γ-crystallins, it is evident that, although the impact in aggregation - and the nature of the aggregate - may differ in each system, at the molecular level there is a competition between metal ion coordination and the stability of ß-sheet structures. Considering the importance of the ß-sheet fold in biology, it is fundamental to understand the energetics and molecular details behind such competition. This opinion article aims to highlight future research directions in the field that can help tackle the important question of how metal ion binding may impact protein folding and aggregation and how this relates to disease.

3.
Inorg Chem ; 62(27): 10592-10604, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37379524

ABSTRACT

Cataract is the leading cause of blindness worldwide, and it is caused by crystallin damage and aggregation. Senile cataractous lenses have relatively high levels of metals, while some metal ions can directly induce the aggregation of human γ-crystallins. Here, we evaluated the impact of divalent metal ions in the aggregation of human ßB2-crystallin, one of the most abundant crystallins in the lens. Turbidity assays showed that Pb2+, Hg2+, Cu2+, and Zn2+ ions induce the aggregation of ßB2-crystallin. Metal-induced aggregation is partially reverted by a chelating agent, indicating the formation of metal-bridged species. Our study focused on the mechanism of copper-induced aggregation of ßB2-crystallin, finding that it involves metal-bridging, disulfide-bridging, and loss of protein stability. Circular dichroism and electron paramagnetic resonance (EPR) revealed the presence of at least three Cu2+ binding sites in ßB2-crystallin, one of them with spectroscopic features typical for Cu2+ bound to an amino-terminal copper and nickel (ATCUN) binding motif, which is found in Cu transport proteins. The ATCUN-like Cu binding site is located at the unstructured N-terminus of ßB2-crystallin, and it could be modeled by a peptide with the first six residues in the protein sequence (NH2-ASDHQF-). Isothermal titration calorimetry indicates a nanomolar Cu2+ binding affinity for the ATCUN-like site. An N-truncated form of ßB2-crystallin is more susceptible to Cu-induced aggregation and is less thermally stable, indicating a protective role for the ATCUN-like site. EPR and X-ray absorption spectroscopy studies reveal the presence of a copper redox active site in ßB2-crystallin that is associated with metal-induced aggregation and formation of disulfide-bridged oligomers. Our study demonstrates metal-induced aggregation of ßB2-crystallin and the presence of putative copper binding sites in the protein. Whether the copper-transport ATCUN-like site in ßB2-crystallin plays a functional/protective role or constitutes a vestige from its evolution as a lens structural protein remains to be elucidated.


Subject(s)
Cataract , Crystallins , Humans , Amino Acid Sequence , Cataract/metabolism , Copper/chemistry , Crystallins/metabolism , Ions
4.
J Am Chem Soc ; 145(12): 6781-6797, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36918380

ABSTRACT

Cataracts are caused by high-molecular-weight aggregates of human eye lens proteins that scatter light, causing lens opacity. Metal ions have emerged as important potential players in the etiology of cataract disease, as human lens γ-crystallins are susceptible to metal-induced aggregation. Here, the interaction of Cu2+ ions with γD-, γC-, and γS-crystallins, the three most abundant γ-crystallins in the lens, has been evaluated. Cu2+ ions induced non-amyloid aggregation in all three proteins. Solution turbidimetry, sodium dodecyl sulfate poly(acrylamide) gel electrophoresis (SDS-PAGE), circular dichroism, and differential scanning calorimetry showed that the mechanism for Cu-induced aggregation involves: (i) loss of ß-sheet structure in the N-terminal domain; (ii) decreased thermal and kinetic stability; (iii) formation of metal-bridged species; and (iv) formation of disulfide-bridged dimers. Isothermal titration calorimetry (ITC) revealed distinct Cu2+ binding affinities in the γ-crystallins. Electron paramagnetic resonance (EPR) revealed two distinct Cu2+ binding sites in each protein. Spin quantitation demonstrated the reduction of γ-crystallin-bound Cu2+ ions to Cu+ under aerobic conditions, while X-ray absorption spectroscopy (XAS) confirmed the presence of linear or trigonal Cu+ binding sites in γ-crystallins. Our EPR and XAS studies revealed that γ-crystallins' Cu2+ reductase activity yields a protein-based free radical that is likely a Tyr-based species in human γD-crystallin. This unique free radical chemistry carried out by distinct redox-active Cu sites in human lens γ-crystallins likely contributes to the mechanism of copper-induced aggregation. In the context of an aging human lens, γ-crystallins could act not only as structural proteins but also as key players for metal and redox homeostasis.


Subject(s)
Cataract , Crystallins , gamma-Crystallins , Humans , gamma-Crystallins/chemistry , Copper/chemistry , Ions , Oxidoreductases
5.
J Inorg Biochem ; 242: 112159, 2023 05.
Article in English | MEDLINE | ID: mdl-36827733

ABSTRACT

Loss of metal homeostasis may be involved in several age-related diseases, such as cataracts. Cataracts are caused by the aggregation of lens proteins into light-scattering high molecular weight complexes that impair vision. Environmental exposure to heavy metals, such as mercury, is a risk factor for cataract development. Indeed, mercury ions induce the non-amyloid aggregation of human γC- and γS crystallins, while human γD-crystallin is not sensitive to this metal. Using Differential Scanning Calorimetry (DSC), we evaluate the impact of mercury ions on the kinetic stability of the three most abundant human γ-crystallins. The metal/crystallin interactions were characterized using Isothermal Titration Calorimetry (ITC). Human γD-crystallins exhibited kinetic stabilization due to the presence of mercury ions, despite its thermal stability being decreased. In contrast, human γC- and γS-crystallins are both, thermally and kinetically destabilized by this metal, consistent with their sensitivity to mercury-induced aggregation. The interaction of human γ-crystallins with mercury ions is highly exothermic and complex, since the protein interacts with the metal at more than three sites. The isolated domains of human γ-D and its variant with the H22Q mutation were also studied, revealing the importance of these regions in the mercury-induced stabilization by a direct metal-protein interaction.


Subject(s)
Cataract , Mercury , gamma-Crystallins , Humans , gamma-Crystallins/chemistry , gamma-Crystallins/genetics , gamma-Crystallins/metabolism , Cataract/genetics , Cataract/metabolism , Mutation , Ions
6.
J Chem Inf Model ; 63(1): 161-172, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36468829

ABSTRACT

Chloroquine (CQ) is a first-choice drug against malaria and autoimmune diseases. It has been co-administered with zinc against SARS-CoV-2 and soon dismissed because of safety issues. The structural features of Zn-CQ complexes and the effect of CQ on zinc distribution in cells are poorly known. In this study, state-of-the-art computations combined with experiments were leveraged to solve the structural determinants of zinc-CQ interactions in solution and the solid state. NMR, ESI-MS, and X-ray absorption and diffraction methods were combined with ab initio molecular dynamics calculations to address the kinetic lability of this complex. Within the physiological pH range, CQ binds Zn2+ through the quinoline ring nitrogen, forming [Zn(CQH)Clx(H2O)3-x](3+)-x (x = 0, 1, 2, and 3) tetrahedral complexes. The Zn(CQH)Cl3 species is stable at neutral pH and at high chloride concentrations typical of the extracellular medium, but metal coordination is lost at a moderately low pH as in the lysosomal lumen. The pentacoordinate complex [Zn(CQH)(H2O)4]3+ may exist in the absence of chloride. This in vitro/in silico approach can be extended to other metal-targeting drugs and bioinorganic systems.


Subject(s)
COVID-19 , Coordination Complexes , Humans , Chloroquine/pharmacology , Chloroquine/chemistry , Molecular Dynamics Simulation , Zinc/chemistry , Chlorides , COVID-19 Drug Treatment , SARS-CoV-2 , Metals
7.
Metallomics ; 14(10)2022 10 08.
Article in English | MEDLINE | ID: mdl-36151967

ABSTRACT

Contrasting reports exist in the literature regarding the effect of chloroquine treatment on cellular zinc uptake or secretion. Here, we tested the effect of chloroquine administration in the Drosophila model organism. We show that larvae grown on a diet supplemented with 2.5 mg/ml chloroquine lose up to 50% of their stored zinc and around 10% of their total potassium content. This defect in chloroquine-treated animals correlates with the appearance of abnormal autophagolysosomes in the principal cells of the Malpighian tubules, where zinc storage granules reside. We further show that the reported increase of Fluozin-3 fluorescence following treatment of cells with 300 µM chloroquine for 1 h may not reflect increased zinc accumulation, since a similar treatment in Madin-Darby canine kidney cells results in a 36% decrease in their total zinc content. Thus, chloroquine should not be considered a zinc ionophore. Zinc supplementation plus chloroquine treatment restored zinc content both in vivo and in vitro, without correcting autophagic or other ionic alterations, notably in potassium, associated with the chloroquine treatment. We suggest that chloroquine or hydroxychloroquine administration to patients could reduce intracellular zinc storage pools and be part of the drug's mechanism of action.


Subject(s)
Drosophila melanogaster , Malpighian Tubules , Animals , Chloroquine/pharmacology , Dogs , Hydroxychloroquine/pharmacology , Ionophores/pharmacology , Potassium , Zinc/pharmacology
8.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35886898

ABSTRACT

The spontaneous interaction between human papillomavirus type 16 (HPV16) L1 virus-like particles (VLPs) and non-functionalized gold nanoparticles (nfGNPs) interferes with the nfGNPs' salt-induced aggregation, inhibiting the red-blue color shift in the presence of NaCl. Electron microscopy and competition studies showed that color-shift inhibition is a consequence of direct nfGNP-VLP interaction and, thus, may produce a negative impact on the virus entry cell process. Here, an in vitro infection system based on the HPV16 pseudovirus (PsV) was used to stimulate the natural infection process in vitro. PsVs carry a pseudogenome with a reporter gene, resulting in a fluorescent signal when PsVs infect a cell, allowing quantification of the viral infection process. Aggregation assays showed that nfGNP-treated PsVs also inhibit color shift in the presence of NaCl. High-resolution microscopy confirmed nfGNP-PsV complex formation. In addition, PsVs can interact with silver nanoparticles, suggesting a generalized interaction of metallic nanoparticles with HPV16 capsids. The treatment of PsVs with nfGNPs produced viral infection inhibition at a higher level than heparin, the canonical inhibitor of HPV infection. Thus, nfGNPs can efficiently interfere with the HPV16 cell entry process and may represent a potential active component in prophylactic formulations to reduce the risk of HPV infection.


Subject(s)
Metal Nanoparticles , Oncogene Proteins, Viral , Papillomavirus Infections , Capsid Proteins/genetics , Gold/pharmacology , Gold/therapeutic use , Human papillomavirus 16/genetics , Humans , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/virology , Papillomavirus Infections/prevention & control , Silver , Sodium Chloride/pharmacology
9.
Methods Enzymol ; 666: 297-314, 2022.
Article in English | MEDLINE | ID: mdl-35465923

ABSTRACT

Most proteins implicated in neurodegenerative diseases bind metal ions, notably copper and zinc. Metal ion binding may be part of the protein's function or, alternatively, may promote a deleterious gain of function. With regard to Cu2+ ions, electron paramagnetic resonance techniques have proven to be instrumental in determining the biophysical characteristics of the copper binding sites, as well as structural features of the coordinating protein and how they are impacted by metal binding. Here, the most useful methods are described as they apply to the prion protein, which serves as a model for the broader spectrum of neurodegenerative proteins.


Subject(s)
Prion Proteins , Prions , Binding Sites , Copper/chemistry , Electron Spin Resonance Spectroscopy/methods , Prion Proteins/chemistry , Prion Proteins/metabolism , Prions/chemistry , Prions/metabolism , Zinc/metabolism
10.
Proc Natl Acad Sci U S A ; 119(16): e2117807119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412912

ABSTRACT

Zinc deficiency is commonly attributed to inadequate absorption of the metal. Instead, we show that body zinc stores in Drosophila melanogaster depend on tryptophan consumption. Hence, a dietary amino acid regulates zinc status of the whole insect­a finding consistent with the widespread requirement of zinc as a protein cofactor. Specifically, the tryptophan metabolite kynurenine is released from insect fat bodies and induces the formation of zinc storage granules in Malpighian tubules, where 3-hydroxykynurenine and xanthurenic acid act as endogenous zinc chelators. Kynurenine functions as a peripheral zinc-regulating hormone and is converted into a 3-hydroxykynurenine­zinc­chloride complex, precipitating within the storage granules. Thus, zinc and the kynurenine pathway­well-known modulators of immunity, blood pressure, aging, and neurodegeneration­are physiologically connected.


Subject(s)
Drosophila melanogaster , Kynurenine , Tryptophan , Zinc , Animals , Drosophila melanogaster/metabolism , Fat Body/metabolism , Kynurenine/metabolism , Malpighian Tubules/metabolism , Tryptophan/metabolism , Zinc/metabolism
11.
J Inorg Biochem ; 229: 111715, 2022 04.
Article in English | MEDLINE | ID: mdl-35074552

ABSTRACT

Amyloid aggregation of α-synuclein (AS) is one of the hallmarks of Parkinson's disease (PD). Copper ions specifically bind at the N-terminus of AS, accelerating protein aggregation. Its protein homolog ß-synuclein (BS) is also a copper binding protein, but it inhibits AS aggregation. Here, a comparative spectroscopic study of the Cu2+ binding properties of AS and BS has been performed, using electronic absorption, circular dichroism (CD) and electronic paramagnetic resonance (EPR). Our comparative spectroscopic study reveals striking similarities between the Cu2+ binding features of the two proteins. The Cu2+ binding site at the N-terminal group of BS protein, modeled by the BS (1-15) fragment is identical to that of AS; however, its rate of reduction is three times faster as compared to the AS site, consistent with BS having an additional Met residue in its Met1-Xn-Met5-Xn-Met10 motif. The latter is also evident in the cyclic voltammetry studies of the Cu-BS complex. On the other hand, the Cu2+ binding features of the His site in both proteins, as modeled by AS(45-55) and BS(60-70), are identical, indicating that the shift in the His position does not affect its coordination features. Finally, replacement of Glu46 by Ala does not alter Cu2+ binding to the His site, suggesting that the familial PD E46K mutation would not impact copper-induced aggregation. While further studies of the redox activity of copper bound to His50 in AS are required to understand the role of this site in metal-mediated aggregation, our study contributes to a better understanding of the bioinorganic chemistry of PD.


Subject(s)
Copper/metabolism , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , Amino Acid Sequence , Binding Sites , Histidine/chemistry , Histidine/metabolism , Methionine/chemistry , Methionine/metabolism , Protein Binding , alpha-Synuclein/chemistry , beta-Synuclein/chemistry
12.
Curr Opin Chem Biol ; 66: 102098, 2022 02.
Article in English | MEDLINE | ID: mdl-34768088

ABSTRACT

The cellular prion protein (PrPC) is a metal-binding biomolecule that can interact with different protein partners involved in pivotal physiological processes, such as neurogenesis and neuronal plasticity. Recent studies profile copper and PrPC as important players in the pathological mechanisms of Alzheimer's disease and cancer. Although the copper-PrPC interaction has been characterized extensively, the role of the metal ion in the physiological and pathological roles of PrPC has been barely explored. In this article, we discuss how copper binding and proteolytic processing may impact the ability of PrPC to recruit protein partners for its functional roles. The importance to dissect the role of copper-PrPC interactions in health and disease is also underscored.


Subject(s)
Alzheimer Disease , Neoplasms , Chemistry, Bioinorganic , Copper/metabolism , Humans , Prion Proteins/chemistry
13.
J Inorg Biochem ; 228: 111686, 2022 03.
Article in English | MEDLINE | ID: mdl-34929540

ABSTRACT

The cellular prion protein (PrPC) is a membrane-anchored copper binding protein that undergoes proteolytic processing. ß-cleavage of PrPC is associated with a pathogenic condition and it yields two fragments: N2 with residues 23-89, and C2 including residues 90-231. The membrane-bound C2 fragment retains the Cu binding sites at His96 and His111, but it also has a free N-terminal NH2 group. In this study, the impact of ß-cleavage of PrPC in its Cu(II) binding properties was evaluated, using the peptide of the human prion protein hPrP(90-115) as a model for the C2 fragment. The Cu(II) coordination properties of hPrP(90-115) were studied using circular dichroism (CD) and electron paramagnetic resonance (EPR); while the H96A and H111A substitutions and its acetylated variants were also studied. Cu binding to hPrP(90-115) is dependent on metal ion concentration: At low copper concentrations the participation of His96 and free NH2-terminus is evident, while at high copper concentrations the His111 site is populated without participation of the N-terminal NH2 group. The presence of a free NH2-terminal group in the C2 fragment significantly impacts the Cu(II) coordination properties of the His96 site, where the NH2 group also anchors the metal ion. This study provides further insights into the impact of proteolytic processing of PrPC in the Cu binding properties of this important neuronal protein.


Subject(s)
Copper/chemistry , Prion Diseases/metabolism , Prion Proteins/chemistry , Prion Proteins/metabolism , Binding Sites , Circular Dichroism , Electron Spin Resonance Spectroscopy/methods , Histidine/chemistry , Humans , Peptides/chemistry , Prions/chemistry , Prions/metabolism , Protein Binding
14.
Phys Chem Chem Phys ; 23(38): 21568-21578, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34550129

ABSTRACT

Prions have been linked to neurodegenerative diseases that affect various species of mammals including humans. The prion protein, located mainly in neurons, is believed to play the role of metal ion transporter. High levels of copper ions have been related to structural changes. A 32-residue region of the N-terminal domain, known as octarepeat, can bind up to four copper ions. Different coordination modes have been observed and are strongly dependent on Cu2+ concentration. Many theoretical studies carried out so far have focused on studying the coordination modes of a single copper ion. In this work we investigate the octarepeat region coordinated with four copper ions. Molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations using the polarizable AMOEBA force field have been carried out. The polarizable MD simulations starting from a fully extended conformation indicate that the tetra-Cu2+/octarepeat complex forms a globular structure. The globular form is stabilized by interactions between Cu2+ and tryptophan residues resulting in some coordination sites observed to be in close proximity, in agreement with experimental results. Subsequent QM/MM simulations on several snapshots suggests the system is in a high-spin quintet state, with all Cu2+ bearing one single electron, and all unpaired electrons are ferromagnetically coupled. NMR simulations on selected structures provides insights on the chemical shifts of the first shell ligands around the metals with respect to inter-metal distances.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Density Functional Theory , Molecular Dynamics Simulation , Prion Proteins/chemistry , Electrons , Molecular Conformation
15.
Exp Eye Res ; 211: 108707, 2021 10.
Article in English | MEDLINE | ID: mdl-34332989

ABSTRACT

The nuclear region of the lens is metabolically quiescent, but it is far from inert chemically. Without cellular renewal and with decades of environmental exposures, the lens proteome, lipidome, and metabolome change. The lens crystallins have evolved exquisite mechanisms for resisting, slowing, adapting to, and perhaps even harnessing the effects of these cumulative chemical modifications to minimize the amount of light-scattering aggregation in the lens over a lifetime. Redox chemistry is a major factor in these damages and mitigating adaptations, and as such, it is likely to be a key component of any successful therapeutic strategy for preserving or rescuing lens transparency, and perhaps flexibility, during aging. Protein redox chemistry is typically mediated by Cys residues. This review will therefore focus primarily on the Cys-rich γ-crystallins of the human lens, taking care to extend these findings to the ß- and α-crystallins where pertinent.


Subject(s)
Cysteine/metabolism , Lens, Crystalline/metabolism , gamma-Crystallins/metabolism , Aging/physiology , Disulfides/metabolism , Glutathione/metabolism , Glutathione Disulfide/metabolism , Humans , Oxidation-Reduction , Sulfhydryl Compounds/metabolism
16.
Inorg Chem ; 60(12): 8958-8972, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34043332

ABSTRACT

Amyloid ß (Aß) is a Cu-binding peptide that plays a key role in the pathology of Alzheimer's disease. A recent report demonstrated that Aß disrupts the Cu-dependent interaction between cellular prion protein (PrPC) and N-methyl-d-aspartate receptor (NMDAR), inducing overactivation of NMDAR and neurotoxicity. In this context, it has been proposed that Aß competes for Cu with PrPC; however, there is no spectroscopic evidence to support this hypothesis. Prion protein (PrP) can bind up to six Cu(II) ions: from one to four at the octarepeat (OR) region, producing low- and high-occupancy modes, and two at the His96 and His111 sites. Additionally, PrPC is cleaved by α-secretases at Lys110/His111, yielding a new Cu(II)-binding site at the α-cleaved His111. In this study, the competition for Cu(II) between Aß(1-16) and peptide models for each Cu-binding site of PrP was evaluated using circular dichroism and electron paramagnetic resonance. Our results show that the impact of Aß(1-16) on Cu(II) coordination to PrP is highly site-specific: Aß(1-16) cannot effectively compete with the low-occupancy mode at the OR region, whereas it partially removes the metal ion from the high-occupancy modes and forms a ternary OR-Cu(II)-Aß(1-16) complex. In contrast, Aß(1-16) removes all Cu(II) ions from the His96 and His111 sites without formation of ternary species. Finally, at the α-cleaved His111 site, Aß(1-16) yields at least two different ternary complexes depending on the ratio of PrP/Cu(II)/Aß. Altogether, our spectroscopic results indicate that only the low-occupancy mode at the OR region resists the effect of Aß, while Cu(II) coordination to the high-occupancy modes and all other tested sites of PrP is perturbed, by either removal of the metal ion or formation of ternary complexes. These results provide important insights into the intricate effect of Aß on Cu(II) binding to PrP and the potential neurotoxic mechanisms through which Aß might affect Cu-dependent functions of PrPC, such as NMDAR modulation.


Subject(s)
Amyloid beta-Peptides/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Prion Proteins/chemistry , Binding Sites , Models, Molecular , Molecular Structure , Receptors, N-Methyl-D-Aspartate/chemistry
17.
Met Ions Life Sci ; 202020 Mar 23.
Article in English | MEDLINE | ID: mdl-32851824

ABSTRACT

Cupredoxins host in their scaffold one of the most studied and interesting metal sites in biology: the type 1 (T1) or blue Cu center. Blue Cu proteins have evolved to play key roles in biological electron transfer and have the ability to react with a wide variety of redox partners. The inner coordination sphere of T1 Cu sites conserves two histidines and one cysteine with a short Cu-S(Cys) bond as ligands in a trigonal arrangement, with a variable axial ligand that modulates the electronic structure and reactivity. The structural, electronic and geometric features of T1 Cu centers provide the basis for a site that can be optimized by the protein structure for each biological function. This chapter highlights the properties that make this unique Cu center in biology an efficient and tunable electron transfer site. The contributions of the first coordination shell and the high covalency of the Cu-S(Cys) bond in the T1 Cu site to its distinctive geometric and spectroscopic features are discussed, as well as the role of the protein scaffold in imposing an 'entatic' state with a distorted tetrahedral geometry that minimizes geometric changes upon redox cycling. The analysis of naturally occurring perturbed blue Cu sites provides further insights into how the protein scaffold can tune the properties of the T1 Cu site. Blue Cu sites display a wide range of reduction potentials, as these are tuned to be consistent with their physiologically relevant electron donors and acceptors. The different properties of the protein matrix that play important roles in finetuning the reduction potential of T1 Cu sites are also discussed, including the nature of the axial ligand and outer coordination sphere effects. These concepts are further illustrated by the discussion of examples of biosynthetic blue Cu proteins. Finally, the different features of the T1 Cu site that make it an optimal site for electron transfer (ET) are discussed, in terms of Markus theory for intra- and inter-molecular ET. The active site in multicopper oxidases is used as an example to illustrate the contributions of the anisotropic covalency of the blue Cu site to an efficient ET, while the diverse reactivity of the T1 Cu sites in these enzymes is discussed to dissect the different properties provided by the protein that help tune these unique sites for biological ET.


Subject(s)
Electrons , Copper , Electron Transport , Ligands , Oxidation-Reduction
19.
J Phys Chem B ; 123(27): 5671-5677, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31199646

ABSTRACT

γD-Crystallin (HγDC) is a key structural protein in the human lens, whose aggregation has been associated with the development of cataracts. Single-point mutations and post-translational modifications destabilize HγDC interactions, forming partially folded intermediates, where hydrophobic residues are exposed and thus triggering its aggregation. In this work, we used alchemical free-energy calculations to predict changes in thermodynamic stability (ΔΔG) of 10 alanine-scanning variants and 12 HγDC mutations associated with the development of congenital cataract. Our results show that W42R is the most destabilizing mutation in HγDC. This has been corroborated through experimental determination of ΔΔG employing differential scanning calorimetry. Calculations of hydration free energies from the HγDC WT and the W42R mutant suggested that the mutant has a higher aggregation propensity. Our combined theoretical and experimental results contribute to understand HγDC destabilization and aggregation mechanisms in age-onset cataracts.


Subject(s)
Thermodynamics , gamma-Crystallins/chemistry , Calorimetry, Differential Scanning , Humans , Molecular Dynamics Simulation , Mutation , Protein Conformation , gamma-Crystallins/genetics
20.
J Neurochem ; 150(5): 507-521, 2019 09.
Article in English | MEDLINE | ID: mdl-31099098

ABSTRACT

Parkinson's disease is the second most common neurodegenerative disorder worldwide. Neurodegeneration in this pathology is characterized by the loss of dopaminergic neurons in the substantia nigra, coupled with cytoplasmic inclusions known as Lewy bodies containing α-synuclein. The brain is an organ that concentrates metal ions, and there is emerging evidence that a break-down in metal homeostasis may be a critical factor in a variety of neurodegenerative diseases. α-synuclein has emerged as an important metal-binding protein in the brain, whereas these interactions play an important role in its aggregation and might represent a link between protein aggregation, oxidative damage, and neuronal cell loss. Additionally, α-synuclein undergoes several post-translational modifications that regulate its structure and physiological function, and may be linked to the aggregation and/or oligomer formation. This review is focused on the interaction of this protein with physiologically relevant metal ions, highlighting the cases where metal-AS interactions profile as key modulators for its structural, aggregation, and membrane-binding properties. The impact of α-synuclein phosphorylation and N-terminal acetylation in the metal-binding properties of the protein are also discussed, underscoring a potential interplay between PTMs and metal ion binding in regulating α-synuclein physiological functions and its role in pathology. This article is part of the Special Issue "Synuclein".


Subject(s)
Metals/metabolism , Parkinson Disease/metabolism , Protein Processing, Post-Translational , alpha-Synuclein/metabolism , Acetylation , Binding Sites , Brain/metabolism , Cations, Divalent/metabolism , Humans , Oxidative Stress , Oxygen/metabolism , Phosphorylation , Protein Aggregation, Pathological , Protein Binding , Protein Domains , Structure-Activity Relationship , Sumoylation , alpha-Synuclein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...