Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Toxicon ; 223: 107011, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36584790

ABSTRACT

Envenomation by Bothrops snakes and Apis mellifera bee may imply systemic disorders which affect well-perfused organs such as kidneys, a process that can lead to acute renal failure. Nevertheless, there is scarce information regarding a direct renal cell effect and the putative antagonism by antivenoms. Here the cytotoxic effect of B. jararacussu and A. mellifera venoms was evaluated in the renal proximal tubule cell line LLC-PK1, as well as the antagonism of this effect by heparin. B. jararacussu venom showed significant cytotoxicity as assessed by LDH release and MTT reduction, with a sharp decline of the cell number after 180 min (>90% at 50 µg/mL). A. mellifera venom produced a much faster and potent cytotoxic activity, conferring almost no viable cells after 15 min at 25 µg/mL. Phase contrast microscopy revealed that while B. jararacussu venom induced a progressive loss of cell adhesion and detachment, A. mellifera venom promoted a rapid plasma membrane disruption and nuclear condensation suggestive of necrotic cell death. Pre-incubation of both venoms with heparin for 30 min significantly reduced cytotoxicity. Our results demonstrate direct toxicity of B. jararacussu and A. mellifera venoms toward renal cells but with distinct kinetics and cell pattern, suggesting different mechanisms of action. In addition, the antagonistic, cytoprotective effect of heparin ascribes such compound as a promising drug for preventing renal failure from envenomation.


Subject(s)
Antineoplastic Agents , Bothrops , Crotalid Venoms , Bees , Animals , Heparin/pharmacology , Antivenins/pharmacology , Crotalid Venoms/toxicity , Kidney
2.
Front Pharmacol ; 13: 916312, 2022.
Article in English | MEDLINE | ID: mdl-36105192

ABSTRACT

The Na+/K+-ATPase is an integral membrane ion pump, essential to maintaining osmotic balance in cells in the presence of cardiotonic steroids; more specifically, ouabain can be an endogenous modulator of the Na+/K+-ATPase. Here, we conducted a systematic review of the in vitro effects of cardiotonic steroids on Ca2+ in the brain of rats and mice. Methods: The review was carried out using the PubMed, Virtual Health Library, and EMBASE databases (between 12 June 2020 and 30 June 2020) and followed the guidelines described in the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). Results: in total, 829 references were identified in the electronic databases; however, only 20 articles were considered, on the basis of the inclusion criteria. The studies demonstrated the effects of ouabain on Ca2+ signaling in synaptosomes, brain slices, and cultures of rat and mouse cells. In addition to the well-known cytotoxic effects of high doses of ouabain, resulting from indirect stimulation of the reverse mode of the Na+/Ca2+ exchanger and increased intracellular Ca2+, other effects have been reported. Ouabain-mediated Ca2+ signaling was able to act increasing cholinergic, noradrenergic and glutamatergic neurotransmission. Furthermore, ouabain significantly increased intracellular signaling molecules such as InsPs, IP3 and cAMP. Moreover treatment with low doses of ouabain stimulated myelin basic protein synthesis. Ouabain-induced intracellular Ca2+ increase may promote the activation of important cell signaling pathways involved in cellular homeostasis and function. Thus, the study of the application of ouabain in low doses being promising for application in neurological diseases. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020204498, identifier CRD42020204498.

3.
Biochim Biophys Acta Biomembr ; 1864(4): 183868, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35063401

ABSTRACT

Iron is a key element in cell function; however, its excess in iron overload conditions can be harmful through the generation of reactive oxygen species (ROS) and cell oxidative stress. Activity of Na,K-ATPase has been shown to be implicated in cellular iron uptake and iron modulates the Na,K-ATPase function from different tissues. In this study, we determined the effect of iron overload on Na,K-ATPase activity and established the role that isoforms and conformational states of this enzyme has on this effect. Total blood and membrane preparations from erythrocytes (ghost cells), as well as pig kidney and rat brain cortex, and enterocytes cells (Caco-2) were used. In E1-related subconformations, an enzyme activation effect by iron was observed, and in the E2-related subconformations enzyme inhibition was observed. The enzyme's kinetic parameters were significantly changed only in the Na+ curve in ghost cells. In contrast to Na,K-ATPase α2 and α3 isoforms, activation was not observed for the α1 isoform. In Caco-2 cells, which only contain Na,K-ATPase α1 isoform, the FeCl3 increased the intracellular storage of iron, catalase activity, the production of H2O2 and the expression levels of the α1 isoform. In contrast, iron did not affect lipid peroxidation, GSH content, superoxide dismutase and Na,K-ATPase activities. These results suggest that iron itself modulates Na,K-ATPase and that one or more E1-related subconformations seems to be determinant for the sensitivity of iron modulation through a mechanism in which the involvement of the Na, K-ATPase α3 isoform needs to be further investigated.


Subject(s)
Adenosine Triphosphate/metabolism , Chlorides/chemistry , Ferric Compounds/chemistry , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Caco-2 Cells , Chlorides/metabolism , Enterocytes/cytology , Enterocytes/metabolism , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/metabolism , Ferric Compounds/metabolism , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Rats , Sodium-Potassium-Exchanging ATPase/genetics , Swine
4.
J Membr Biol ; 254(5-6): 487-497, 2021 12.
Article in English | MEDLINE | ID: mdl-34128090

ABSTRACT

Na,K-ATPase (NKA) and cardiotonic steroids (CTS) have shown potent cytotoxic and anticancer effects. Here, we have synthesized a series of CTS digoxin derivatives (γ-benzylidene) with substitutions in the lactone ring and evaluated the cytotoxicity caused by digoxin derivatives in tumor and non-tumor cells lines, as well as their effects on NKA. The cytotoxicity assay was determined in HeLa, A549, and WI-26 VA4 after they were treated for 48 h with increased concentrations of CTS. The effects of CTS on NKA activity and immunoblotting of α1 and ß1 isoforms were evaluated at IC50 concentrations in A549 cell membrane. NKA activity from mouse brain cortex was also measured. The majority of CTS exhibited low cytotoxicity in tumor and non-tumor cells, presenting IC50 values at micromolar concentrations, while digoxin showed cytotoxicity at nanomolar concentrations. BD-15 presented the lowest IC50 value (8 µM) in A549 and reduced its NKA activity in 28%. In contrast, BD-7 was the compound that most inhibited NKA (56% inhibition) and presented high IC50 value for A549. In mouse cortex, only BD-15 modulated the enzyme activity in a concentration-dependent inhibition curve. These results demonstrate that the cytotoxicity of these compounds is not related to NKA inhibition. The substitutions in the lactone ring of digoxin led to an increase in the cytotoxic concentration in tumor cells, which may not be interesting for cancer, but it has the advantage of increasing the therapeutic margin of these molecules when compared to classic CTS, and can be used safely in research for other diseases.


Subject(s)
Cardiac Glycosides/toxicity , Animals , Digoxin , Lactones , Mice , Sodium , Sodium-Potassium-Exchanging ATPase
5.
Toxins (Basel) ; 13(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33466223

ABSTRACT

Massive, Africanized honeybee attacks have increased in Brazil over the years. Humans and animals present local and systemic effects after envenomation, and there is no specific treatment for this potentially lethal event. This study evaluated the ability of a new Apilic antivenom, which is composed of F(ab')2 fraction of specific immunoglobulins in heterologous and hyperimmune equine serum, to neutralize A. mellifera venom and melittin, in vitro and in vivo, in mice. Animal experiments were performed in according with local ethics committee license (UFRJ protocol no. DFBCICB072-04/16). Venom dose-dependent lethality was diminished with 0.25-0.5 µL of intravenous Apilic antivenom/µg honeybee venom. In vivo injection of 0.1-1 µg/g bee venom induced myotoxicity, hemoconcentration, paw edema, and increase of vascular permeability which were antagonized by Apilic antivenom. Cytotoxicity, assessed in renal LLC-PK1 cells and challenged with 10 µg/mL honeybee venom or melittin, was neutralized by preincubation with Apilic antivenom, as well the hemolytic activity. Apilic antivenom inhibited phospholipase and hyaluronidase enzymatic activities. In flow cytometry experiments, Apilic antivenom neutralized reduction of cell viability due to necrosis by honeybee venom or melittin. These results showed that this antivenom is effective inhibitor of honeybee venom actions. Thus, this next generation of Apilic antivenom emerges as a new promising immunobiological product for the treatment of massive, Africanized honeybee attacks.


Subject(s)
Antivenins/therapeutic use , Bee Venoms/antagonists & inhibitors , Bites and Stings/drug therapy , Melitten/antagonists & inhibitors , Animals , Antibodies/blood , Bees , Brazil , Cell Line , Cell Survival , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Hemolysis/drug effects , Horses , Hyaluronoglucosaminidase/antagonists & inhibitors , Immunoglobulin Fab Fragments/therapeutic use , Injections, Intradermal , LLC-PK1 Cells , Lethal Dose 50 , Male , Mice , Models, Animal , Neutralization Tests , Phospholipases/antagonists & inhibitors , Swine
6.
Biochem Pharmacol ; 171: 113679, 2020 01.
Article in English | MEDLINE | ID: mdl-31669257

ABSTRACT

There is a renewed interest in the Na+/K+-ATPase (NKA, EC 3.6.3.9) either as a target for new therapeutic uses or for understanding the putative pathophysiological role of its mammalian endogenous ligands. Recent data indicate that bufalin binds to the pig kidney NKA in a way different from ouabain and digoxin, raising the question of a putative class difference between bufadienolides and cardenolides. The purpose of this work was to perform a study of the relationship between structure and both activity and kinetics, focusing mainly on the influence of the lactone ring in C17 (5 vs. 6 membered), the effect of C14-15 cyclization and the carbohydrate moiety in C3. We compared the potency of fourteen related cardiotonic steroids (CTS) for inhibition of the cycling pig kidney NKA in two different concentrations of K+, as well as the affinity for binding to the E2P conformation of the enzyme (Mg-Pi medium) and the potency for inhibiting the E2[2K] conformation of the NKA (K+-pNPPase activity). Cardenolides were clearly sensitive to the antagonistic effect of high K+ concentrations whereas bufadienolides were not or less sensitive. The C14-15 cyclization observed in some bufadienolides, such as resibufogenin and marinobufagin, caused a drastic fall in the affinity for binding to the NKA in the E2P conformation and increased the velocity of K+-pNPPase inhibition. The absence of a carbohydrate moiety in C3 increased the velocity of inhibition. Cardenolides were much more dependent on the E2P conformation for binding than bufadienolides since their ratios of E2[2K] IC50 to E2P Ki were higher than for bufadienolides. Therefore, the present data established the remarkable influence of C14-15 cyclization and of the carbohydrate moiety in C3 on both affinity and kinetics of CTS and indicate that, as a class, bufadienolides would harbor qualitative differences from cardenolides with respect to the NKA conformations to which they can bind.


Subject(s)
Bufanolides/chemistry , Cardenolides/chemistry , Kidney/enzymology , Protein Conformation , Sodium-Potassium-Exchanging ATPase/chemistry , Structure-Activity Relationship , Animals , Bufanolides/metabolism , Bufanolides/pharmacology , Cardenolides/metabolism , Cardenolides/pharmacology , Cardiotonic Agents/chemistry , Cardiotonic Agents/metabolism , Cardiotonic Agents/pharmacology , Digoxin/chemistry , Digoxin/metabolism , Digoxin/pharmacology , Kidney/metabolism , Kinetics , Molecular Structure , Ouabain/chemistry , Ouabain/metabolism , Ouabain/pharmacology , Protein Binding , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism , Swine
7.
Cell Biol Int ; 43(12): 1425-1434, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31166053

ABSTRACT

ß-Adrenergic signaling regulates many physiological processes in skeletal muscles. A wealth of evidence has shown that ß-agonists can increase skeletal muscle mass in vertebrates. Nevertheless, to date, the specific role of ß-adrenergic receptors in different cell phenotypes (myoblasts, fibroblasts, and myotubes) and during the different steps of embryonic skeletal muscle differentiation has not been studied. Therefore, here we address this question through the analysis of embryonic chick primary cultures of skeletal muscle cells during the formation of multinucleated myotubes. We used isoproterenol (ISO), a ß-adrenergic receptor agonist, to activate the ß-adrenergic signaling and quantified several aspects of muscle differentiation. ISO induced an increase in myoblast proliferation, in the percentage of Pax7-positive myoblasts and in the size of skeletal muscle fibers, suggesting that ISO activates a hyperplasic and hypertrophic muscle response. Interestingly, treatment with ISO did not alter the number of fibroblast cells, suggesting that ISO effects are specific to muscle cells in the case of chick myogenic cell culture. We also show that rapamycin, an inhibitor of the mammalian target of rapamycin signaling pathway, did not prevent the effects of ISO on chick muscle fiber size. The collection of these results provides new insights into the role of ß-adrenergic signaling during skeletal muscle proliferation and differentiation and specifically in the regulation of skeletal muscle hyperplasia and hypertrophy.

8.
J Cell Biochem ; 120(8): 13107-13114, 2019 08.
Article in English | MEDLINE | ID: mdl-30883884

ABSTRACT

Despite the growing interest in the antitumor effect of cardiotonic steroids, combination treatments with well-established chemotherapy drugs like paclitaxel have been rarely investigated. Moreover, paclitaxel has been suggested as a Na+ /K+ -ATPase inhibitor. Here we investigated the effect of paclitaxel and digoxin alone or in combination on the viability of human lung (A549) and cervical cancer (HeLa) cell lines and the inhibitory effect of paclitaxel on several mammalian Na+ /K+ -ATPases. Although the viability of both tumor cell lines was concentration-dependently affected by digoxin treatment after 48 hours (A549 IC50 = 31 nM and HeLa IC50 = 151 nM), a partial effect was observed for paclitaxel, with a maximal inhibitory effect of 45% at 1000 nM with A549 and around 70% with HeLa cells (IC50 = 1 nM). Although the two drugs were cytotoxic, their combined effect in HeLa cells was revealed to be antagonistic, as estimated by the combination index. No direct inhibitory effect of paclitaxel was detected in human, pig, rat, and mouse Na+ /K+ -ATPase enzymes, but high concentrations of paclitaxel decreased the Na+ /K+ -ATPase activity in HeLa cells after 48 hours without affecting protein expression. Our findings demonstrate that, under our conditions, paclitaxel and digoxin cotreatment produce antagonistic cytotoxic effects in HeLa cells, and the mechanism of action of paclitaxel does not involve a direct inhibition of Na+ /K+ -ATPase. More studies shall be designed to evaluate the consequences of the interaction of cardiotonic steroids and chemotherapy drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Digoxin/pharmacology , Paclitaxel/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , A549 Cells , Blotting, Western , Cell Survival/drug effects , Drug Antagonism , HeLa Cells , Humans , Ouabain/pharmacology
9.
J Pharmacol Toxicol Methods ; 94(Pt 2): 64-72, 2018.
Article in English | MEDLINE | ID: mdl-30244071

ABSTRACT

INTRODUCTION: Ouabain and digoxin are classical inhibitors of the Na+,K+-ATPase. In addition to their conventional uses as therapeutic agents or experimental tools there is renewed interest due to evidence suggesting they could be endogenous hormones. Somewhat surprisingly, different publications show large discrepancies in potency for inhibiting Na+,K+-ATPase activity (IC50), particularly for the slow binding inhibitors, ouabain and digoxin. METHODS: Using purified pig kidney Na+,K+-ATPase (α1ß1FXYD2) and purified detergent-soluble recombinant human Na+,K+-ATPase (α1ß1FXYD1) we have re-evaluated binding and inhibition kinetics and effects of K+ concentration for ouabain, digoxin, ouabagenin and digoxigenin. RESULTS: We demonstrate unequivocally that for slow binding inhibitors, ouabain and digoxin, long incubation times (≥60 min at 37 °C) are required to avoid under-estimation of potency and correctly determine inhibition (IC50 around 100-200 nM at 5 mM K+) contrary to what occurs when pre-incubation of the drugs without ATP is followed by a short incubation time. By contrast, for the rapidly bound inhibitors, ouabagenin and digoxigenin, short incubation times suffice (<10 min). The strong reduction of inhibitory potency observed at high un-physiological K+ concentrations (≥5 mM) also explained the low potency reported by some authors. DISCUSSION: The data resolve discrepancies in the literature attributable to sub-optimal assay conditions. Similar IC50 values are obtained for pig kidney and recombinant human Na+,K+-ATPase, showing that inhibitory potencies are not determined by the species difference (pig versus human) or environment (membrane-bound versus detergent-soluble) of the Na+,K+-ATPase. The present methodological considerations are especially relevant for drug development of slow binding inhibitors.


Subject(s)
Cardiac Glycosides/pharmacology , Cardiac Glycosides/pharmacokinetics , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Digoxigenin/pharmacokinetics , Digoxin/pharmacokinetics , Humans , Kidney/enzymology , Ouabain/analogs & derivatives , Ouabain/pharmacokinetics , Protein Binding , Structure-Activity Relationship , Swine
10.
Int J Mol Sci ; 19(9)2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30223494

ABSTRACT

Bufadienolides are cardiotonic steroids (CTS) identified in mammals. Besides Na⁺/K⁺-ATPase inhibition, they activate signal transduction via protein⁻protein interactions. Diversity of endogenous bufadienolides and mechanisms of action may indicate the presence of functional selectivity and unique cellular outcomes. We evaluated whether the bufadienolides telocinobufagin and marinobufagin induce changes in proliferation or viability of pig kidney (LLC-PK1) cells and the mechanisms involved in these changes. In some experiments, ouabain was used as a positive control. CTS exhibited an inhibitory IC50 of 0.20 (telocinobufagin), 0.14 (ouabain), and 3.40 µM (marinobufagin) for pig kidney Na⁺/K⁺-ATPase activity and concentrations that barely inhibited it were tested in LLC-PK1 cells. CTS induced rapid ERK1/2 phosphorylation, but corresponding proliferative response was observed for marinobufagin and ouabain instead of telocinobufagin. Telocinobufagin increased Bax:Bcl-2 expression ratio, sub-G0 cell cycle phase and pyknotic nuclei, indicating apoptosis. Src and MEK1/2 inhibitors blunted marinobufagin but not telocinobufagin effect, which was also not mediated by p38, JNK1/2, and PI3K. However, BIO, a GSK-3ß inhibitor, reduced proliferation and, as telocinobufagin, phosphorylated GSK-3ß at inhibitory Ser9. Combination of both drugs resulted in synergistic antiproliferative effect. Wnt reporter activity assay showed that telocinobufagin impaired Wnt/ß-catenin pathway by acting upstream to ß-catenin stabilization. Our findings support that mammalian endogenous bufadienolides may exhibit functional selectivity.


Subject(s)
Bufanolides/pharmacology , LLC-PK1 Cells/drug effects , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , MAP Kinase Signaling System/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Swine , Wnt Signaling Pathway/drug effects
11.
Biochim Biophys Acta Gen Subj ; 1861(8): 1943-1950, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28506883

ABSTRACT

Cardiotonic steroids (CS) are known as modulators of sodium and water homeostasis. These compounds contribute to the excretion of sodium under overload conditions due to its natriuretic property related to the inhibition of the renal Na+/K+-ATPase (NKA) pump α1 isoform. NHE3, the main route for Na+ reabsorption in the proximal tubule, depends on the Na+ gradient generated by the NKA pump. In the present study we aimed to investigate the effects of marinobufagin (MBG) and telocinobufagin (TBG) on the renal function of isolated perfused rat kidney and on the inhibition of NKA activity. Furthermore, we investigated the mechanisms for the cardiotonic steroid-mediated natriuretic effect, by evaluating and comparing the effects of bufalin (BUF), ouabain (OUA), MBG and TBG on NHE3 activity in the renal proximal tubule in vivo. TBG significantly increased GFR, UF, natriuresis and kaliuresis in isolated perfused rat kidney, and inhibits the activity of NKA at a much higher rate than MBG. By stationary microperfusion technique, the perfusion with BUF, OUA, TBG or MBG promoted an inhibitory effect on NHE3 activity, whereas BUF was the most effective agent, and demonstrated a dose-dependent response, with maximal inhibition at 50nM. Furthermore, our data showed the role of NKA-Src kinase pathway in the inhibition of NHE3 by CS. Finally, a downstream step, MEK1/2-ERK1/2 was also investigated, and, similar to Src inhibition, the MEK1/2 inhibitor (U0126) suppressed the BUF effect. Our findings indicate the involvement of NKA-SRc-Kinase-Ras-Raf-ERK1/2 pathway in the downregulation of NHE3 by cardiotonic steroids in the renal proximal tubule, promoting a reduction of proximal sodium reabsorption and natriuresis.


Subject(s)
Bufanolides/pharmacology , Kidney Tubules, Proximal/drug effects , Kidney/drug effects , Sodium-Hydrogen Exchangers/metabolism , Animals , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases/physiology , In Vitro Techniques , Kidney Tubules, Proximal/metabolism , Male , Rats , Rats, Wistar , Sodium-Hydrogen Exchanger 3 , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/physiology , src-Family Kinases/physiology
12.
Toxicon ; 110: 27-34, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26615828

ABSTRACT

Parotoid gland secretions of toad species are a vast reservoir of bioactive molecules with a wide range of biological properties. Herein, for the first time, it is described the isolation by preparative reversed-phase HPLC and the structure elucidation by NMR spectroscopy and/or mass spectrometry of nine major bufadienolides from parotoid gland secretions of the Cuban endemic toad Peltophryne fustiger: ψ-bufarenogin, gamabufotalin, bufarenogin, arenobufagin, 3-(N-suberoylargininyl) marinobufagin, bufotalinin, telocinobufagin, marinobufagin and bufalin. In addition, the secretion was analyzed by UPLC-MS/MS which also allowed the identification of azelayl arginine. The effect of arenobufagin, bufalin and ψ-bufarenogin on Na(+)/K(+)-ATPase activity in a human kidney preparation was evaluated. These bufadienolides fully inhibited the Na(+)/K(+)-ATPase in a concentration-dependent manner, although arenobufagin (IC50 = 28.3 nM) and bufalin (IC50 = 28.7 nM) were 100 times more potent than ψ-bufarenogin (IC50 = 3020 nM). These results provided evidence about the importance of the hydroxylation at position C-14 in the bufadienolide skeleton for the inhibitory activity on the Na(+)/K(+)-ATPase.


Subject(s)
Amphibian Venoms/toxicity , Bufanolides/toxicity , Bufonidae/metabolism , Kidney/drug effects , Membrane Transport Modulators/toxicity , Parotid Gland/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Amphibian Venoms/chemistry , Amphibian Venoms/isolation & purification , Amphibian Venoms/metabolism , Animals , Bufanolides/chemistry , Bufanolides/isolation & purification , Bufanolides/metabolism , Bufonidae/growth & development , Chromatography, High Pressure Liquid , Cuba , Humans , Hydroxylation , Kidney/enzymology , Kinetics , Magnetic Resonance Spectroscopy , Male , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/isolation & purification , Membrane Transport Modulators/metabolism , Molecular Structure , Rivers , Sodium-Potassium-Exchanging ATPase/metabolism , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Secondary Ion , Tandem Mass Spectrometry
13.
Bioorg Med Chem ; 23(15): 4397-4404, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26122772

ABSTRACT

Cardiotonic steroids (CS), natural compounds with traditional use in cardiology, have been recently suggested to exert potent anticancer effects. However, the repertoire of molecules with Na,K-ATPase activity and anticancer properties is limited. This paper describes the synthesis of 6 new digoxin derivatives substituted (on the C17-butenolide) with γ-benzylidene group and their cytotoxic effect on human fibroblast (WI-26 VA4) and cancer (HeLa and RKO) cell lines as well as their effect on Na,K-ATPase activity and expression. As digoxin, compound BD-4 was almost 100-fold more potent than the other derivatives for cytotoxicity with the three types of cells used and was also the only one able to fully inhibit the Na,K-ATPase of HeLa cells after 24h treatment. No change in the Na,K-ATPase α1 isoform protein expression was detected. On the other hand it was 30-40 fold less potent for direct Na,K-ATPase inhibition, when compared to the most potent derivatives, BD-1 and BD-3, and digoxin. The data presented here demonstrated that the anticancer effect of digoxin derivatives substituted with γ-benzylidene were not related with their inhibition of Na,K-ATPase activity or alteration of its expression, suggesting that this classical molecular mechanism of CS is not involved in the cytotoxic effect of our derivatives.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzylidene Compounds/chemistry , Digoxin/analogs & derivatives , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Binding Sites , Brain/enzymology , Cell Line , Cell Survival/drug effects , Digoxin/chemical synthesis , Digoxin/toxicity , HeLa Cells , Humans , Kidney/enzymology , Molecular Docking Simulation , Protein Structure, Tertiary , Rats , Sodium-Potassium-Exchanging ATPase/metabolism
14.
Toxicon ; 103: 80-4, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26091877

ABSTRACT

Bothrops jararacussu venom drastically decreases sarcoplasmic Ca(2+)-ATPase (SERCA) protein expression in vivo and inhibits its activity in vitro, in contrast to a slight increase of Na(+)/K(+)-ATPase expression in murine EDL. We investigated the effect of myotoxins bothropstoxin-I and/or -II (BthTX-I, BthTX-II and BthTX-I+II) on this model. No changes were seen in SERCA1, SERCA2 and Na(+)/K(+)-ATPase α1 protein expression as well as (2+)Ca-ATPase activity, but BthTX-II (1 µg/g) reduced Na(+)/K(+)-ATPase α2 expression by 50% one day after perimuscular injection. Interestingly, BthTX-II inhibited Ca(2+)-ATPase activity (IC50 around 6 nM). Our findings suggest that only BthTX-II affects ion transport ATPases, being a potent SERCA inhibitor and a putative target for antivenom drug development.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/metabolism , Group II Phospholipases A2/toxicity , Animals , Antivenins/pharmacology , Calcium-Transporting ATPases/antagonists & inhibitors , Calcium-Transporting ATPases/metabolism , Crotalid Venoms/toxicity , Inhibitory Concentration 50 , Mice , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle, Skeletal/drug effects , Rats , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism
15.
Planta Med ; 77(15): 1702-6, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21567360

ABSTRACT

Valepotriates are iridoids found in variable amounts in Valerianaceae and might be among the bioactive compounds which confer anxiolytic properties to the Valeriana species. On the other hand, unspecific cytotoxicity has also been described. Presently, however, no particular molecular target has been defined for these compounds. Here we studied the effect of valtrate, acevaltrate, and 1- ß-acevaltrate isolated from Valeriana glechomifolia on the enzymatic activity of rat P-type ATPases. Valepotriates did not affect rat skeletal muscle sarco/endoplasmic reticulum Ca²âº-ATPase (SERCA) activity at the highest concentration used (100 µM). In contrast, the same concentration inhibited roughly half of the total H⁺/K⁺-ATPase activity from rat gastric epithelium (valtrate 54.6 ± 3.2 %, acevaltrate 60.7 ± 7.3 %, 1- ß-acevaltrate 50.2 ± 3.1 %; mean ± SEM, n = 3-5). Finally, these substances showed the highest inhibitory potency toward Na⁺/K⁺-ATPase, and the inhibition curves obtained provided a similar IC50 (in µM) for rat kidney α1 isoform (valtrate 21.2, acevaltrate 22.8, 1- ß-acevaltrate 24.4) and brain hemispheres α2/ α3 isoforms (valtrate 19.4, acevaltrate 42.3, 1- ß-acevaltrate 38.3). Our results suggest that P-type ATPases are differentially inhibited by valepotriates and that Na⁺/K⁺-ATPase might be one of their molecular targets in vivo.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Iridoids/pharmacology , Valerian/chemistry , Adenosine Triphosphatases/drug effects , Adenosine Triphosphatases/metabolism , Animals , Brain/enzymology , Epithelium/enzymology , H(+)-K(+)-Exchanging ATPase/drug effects , H(+)-K(+)-Exchanging ATPase/metabolism , Inhibitory Concentration 50 , Iridoids/chemistry , Iridoids/isolation & purification , Kidney/enzymology , Male , Rats , Rats, Wistar , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Stomach/enzymology
16.
Life Sci ; 88(1-2): 39-42, 2011 Jan 03.
Article in English | MEDLINE | ID: mdl-21047518

ABSTRACT

AIMS: Cardiac glycosides have been extensively used in the treatment of congestive heart failure for more than 200 years. Recently, cardenolides and bufadienolides were isolated from mammalian tissue and are considered as a new class of steroidal hormones. The aim of the present work was to characterize the interaction between the most clinical used cardiac glycoside digoxin and the cardiac glycosides known to exist endogenously, i.e., ouabain, marinobufagin and telocinobufagin, on human kidney Na(+)/K(+)-ATPase. MAIN METHODS: Inhibition of Na(+)/K(+)-ATPase activity from crude membrane preparations of human kidney was performed using increasing concentrations of the drugs alone or mixtures of ouabain:digoxin, telocinobufagin:digoxin and marinobufagin:digoxin in a fixed ratio 1:4, 2:3 and 3:2, respectively. The colorimetric method of Fiske and Subbarow was used to measure the inorganic phosphate released. KEY FINDINGS: Analyses of inhibition curves showed that the experimental curves for all combinations were superimposed on the theoretical additive curves indicating that an additive effect occurs among distinct cardenolides and bufadienolides combinations on the human α1ß1 Na(+)/K(+)-ATPase protomer. SIGNIFICANCE: Considering the extensive use of digoxin in the treatment of heart failure and the recent findings that endogenous cardiac glycosides may have altered levels in many diseases, including heart failure, the demonstration of additive effect between cardiac glycosides can help in the understanding of recent clinical observations, including that lower than usual doses of cardiac glycosides are necessary for decreasing mortality in these patients.


Subject(s)
Cardiac Glycosides/pharmacology , Digoxin/pharmacology , Kidney/enzymology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Bufanolides/pharmacology , Cell Membrane/drug effects , Cell Membrane/enzymology , Dose-Response Relationship, Drug , Drug Interactions , Humans , Inhibitory Concentration 50 , Isoenzymes/antagonists & inhibitors , Kidney/drug effects , Kidney/metabolism , Ouabain/pharmacology
17.
Toxicon ; 55(1): 52-60, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19577587

ABSTRACT

Ca(2+) ions are essential to myonecrosis, a serious complication of snake envenomation, and heparin seems to counteract this effect. We investigated the effect of local injection of Bothrops jararacussu venom in mouse fast-twitch extensor digitorum longus (EDL) muscle, without or with heparin, on functional/molecular alterations of two central proteins involved in intracellular Ca(2+) homeostasis, sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) and Na(+)/K(+)-ATPase. EDL-specific SERCA1 isoform expression dropped significantly just after venom administration (up to 60% compared to control EDL values at days 1 and 3; p<0.05) while SERCA2 and Na(+)/K(+)-ATPase alpha(1) isoform expression increased at the same time (3-6- and 2-3-fold, respectively; p<0.05). Although not significant, Na(+)/K(+)-ATPase alpha(2) isoform followed the same trend. Except for SERCA2, all proteins reached basal levels at the 7th day. Intravenous heparin treatment did not affect these profiles. Ca(2+)-ATPase activity was also decreased during the first days after venom injection, but here heparin was effective to reinstate activity to control levels within 3 days. We also showed that B. jararacussu venom directly inhibited Ca(2+)-ATPase activity in a concentration-dependent manner. Our results indicate that EDL SERCA and Na(+)/K(+)-ATPase are importantly affected by B. jararacussu venom and heparin has protective effect on activity but not on protein expression.


Subject(s)
Adenosine Triphosphatases/metabolism , Antivenins/pharmacology , Crotalid Venoms/toxicity , Heparin/pharmacology , Muscle, Skeletal/drug effects , Regeneration/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Animals , Bothrops , Dose-Response Relationship, Drug , Female , Isoenzymes/metabolism , Male , Mice , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Necrosis/chemically induced , Organ Specificity , Rats , Rats, Wistar , Species Specificity , Time Factors
18.
Auton Neurosci ; 146(1-2): 38-46, 2009 Mar 12.
Article in English | MEDLINE | ID: mdl-19188094

ABSTRACT

Adaptive supersensitivity is a phenomenon characteristic of excitable tissues and discloses as a compensatory adjustment of tissue's response to unrelated stimulatory endogenous and exogenous substances after chronic interruption of excitatory neurotransmission. The mechanisms underlying such higher postjunctional sensitivity have been postulated for a variety of cell types. In smooth muscles, especially the vas deferens with its rich sympathetic innervation, the mechanisms responsible for supersensitivity are partly understood and appear to be different from one species to another. The present review provides a general understanding of adaptive supersensitivity and emphasizes early and recent information about the putative mechanisms involved in this phenomenon in rodent vas deferens.


Subject(s)
Adaptation, Physiological , Hypogastric Plexus/physiology , Signal Transduction/physiology , Sympathetic Fibers, Postganglionic/physiology , Vas Deferens/physiology , Animals , Calcium Channels/drug effects , Calcium Channels/physiology , Calcium Signaling , Guinea Pigs , Humans , Hypogastric Plexus/drug effects , Male , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Rats , Receptors, Adrenergic/drug effects , Receptors, Adrenergic/physiology , Receptors, Muscarinic/drug effects , Receptors, Muscarinic/physiology , Signal Transduction/drug effects , Sodium-Potassium-Exchanging ATPase/drug effects , Sodium-Potassium-Exchanging ATPase/physiology , Sympathectomy , Sympathetic Fibers, Postganglionic/drug effects , Time Factors , Vas Deferens/drug effects , Vas Deferens/innervation
19.
J Cell Biol ; 182(6): 1153-69, 2008 Sep 22.
Article in English | MEDLINE | ID: mdl-18794328

ABSTRACT

Here, we show that the Na/K-ATPase interacts with caveolin-1 (Cav1) and regulates Cav1 trafficking. Graded knockdown of Na/K-ATPase decreases the plasma membrane pool of Cav1, which results in a significant reduction in the number of caveolae on the cell surface. These effects are independent of the pumping function of Na/K-ATPase, and instead depend on interaction between Na/K-ATPase and Cav1 mediated by an N-terminal caveolin-binding motif within the ATPase alpha1 subunit. Moreover, knockdown of the Na/K-ATPase increases basal levels of active Src and stimulates endocytosis of Cav1 from the plasma membrane. Microtubule-dependent long-range directional trafficking in Na/K-ATPase-depleted cells results in perinuclear accumulation of Cav1-positive vesicles. Finally, Na/K-ATPase knockdown has no effect on processing or exit of Cav1 from the Golgi. Thus, the Na/K-ATPase regulates Cav1 endocytic trafficking and stabilizes the Cav1 plasma membrane pool.


Subject(s)
Biological Transport/physiology , Caveolin 1/metabolism , Cell Membrane/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Caveolae/metabolism , Caveolae/ultrastructure , Caveolin 1/genetics , Cell Membrane/ultrastructure , Cytoplasmic Vesicles/metabolism , Endocytosis/physiology , Fluorescence Resonance Energy Transfer , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Microtubules/metabolism , Point Mutation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , RNA Interference , Rats , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction/physiology , Sodium-Potassium-Exchanging ATPase/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/genetics , src-Family Kinases/metabolism
20.
Eur J Pharmacol ; 565(1-3): 151-7, 2007 Jun 22.
Article in English | MEDLINE | ID: mdl-17451677

ABSTRACT

Changes in myocardial expression of Na+/K+-ATPase alpha-subunit isoforms have been demonstrated in different models of cardiac hypertrophy and hypertension. Here we studied the expression of these isozymes in stroke-prone spontaneously hypertensive rats (SHRSP) and the influence of high salt diet and treatment with the dihydropyridine lacidipine. Adult SHRSP were offered either 1% NaCl or water as drinking solution for 6 weeks. Salt-loaded SHRSP were treated or not with 1 mg/kg/day lacidipine. Compared to Wistar Kyoto (WKY) rats, non-salt-loaded SHRSP presented significant hypertension and cardiac hypertrophy. Salt intake markedly enhanced cardiac hypertrophy, an effect blunted by lacidipine. [3H]Ouabain binding assays on total particulate fractions from heart ventricles revealed the existence of two high-affinity sites with Kd approximately 25 and approximately 200 nM, ascribed to the alpha3 and alpha2 isoforms, respectively. Bmax of alpha3 was unexpectedly high (40% of total high-affinity binding) in ventricles from WKY rats but very low in all groups of SHRSP. On the other hand, Bmax of alpha2 was similar in WKY and non-salt-loaded SHRSP; however, salt loading of SHRSP resulted in a Bmax reduction of 20% (P<0.05), an effect blocked by lacidipine. These effects were largely confirmed by immunoblotting analysis, which, in addition, demonstrated that the density of the ubiquitous alpha1 isoform was comparable among the experimental groups. In conclusion, WKY rats showed a high myocardial expression of the Na+/K+-ATPase alpha3 subunit, which was not found in SHRSP; the level of the alpha2 isoform was similar in untreated SHRSP and WKY; salt-loading of SHRSP promoted reduction of the alpha2 isoform, and this effect was completely hampered by lacidipine.


Subject(s)
Calcium Channel Blockers/therapeutic use , Dihydropyridines/therapeutic use , Heart Ventricles/enzymology , Hypertension/enzymology , Isoenzymes/genetics , Sodium Chloride, Dietary/administration & dosage , Sodium-Potassium-Exchanging ATPase/genetics , Stroke/etiology , Animals , Cardiomegaly/etiology , Hypertension/complications , Hypertension/drug therapy , Isoenzymes/analysis , Male , Ouabain/metabolism , Protein Subunits , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Sodium-Potassium-Exchanging ATPase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...