Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Numer Method Biomed Eng ; 38(12): e3657, 2022 12.
Article in English | MEDLINE | ID: mdl-36282099

ABSTRACT

In silico, medicine models are frequently used to represent a phenomenon across multiples space-time scales. Most of these multiscale models require impracticable execution times to be solved, even using high performance computing systems, because typically each representative volume element in the upper scale model is coupled to an instance of the lower scale model; this causes a combinatory explosion of the computational cost, which increases exponentially as the number of scales to be modelled increases. To attenuate this problem, it is a common practice to interpose between the two models a particularisation operator, which maps the upper-scale model results into a smaller number of lower-scale models, and an operator, which maps the fewer results of the lower-scale models on the whole space-time homogenisation domain of upper-scale model. The aim of this study is to explore what is the simplest particularisation / homogenisation scheme that can couple a model aimed to predict the growth of a whole solid tumour (neuroblastoma) to a tissue-scale model of the cell-tissue biology with an acceptable approximation error and a viable computational cost. Using an idealised initial dataset with spatial gradients representative of those of real neuroblastomas, but small enough to be solved without any particularisation, we determined the approximation error and the computational cost of a very simple particularisation strategy based on binning. We found that even such simple algorithm can significantly reduce the computational cost with negligible approximation errors.


Subject(s)
Neoplasms , Humans , Computer Simulation , Neoplasms/pathology , Algorithms
2.
Front Microbiol ; 9: 601, 2018.
Article in English | MEDLINE | ID: mdl-29670586

ABSTRACT

The dynamics of hepatitis C virus (HCV) RNA during translation and replication within infected cells were added to a previous age-structured multiscale mathematical model of HCV infection and treatment. The model allows the study of the dynamics of HCV RNA inside infected cells as well as the release of virus from infected cells and the dynamics of subsequent new cell infections. The model was used to fit in vitro data and estimate parameters characterizing HCV replication. This is the first model to our knowledge to consider both positive and negative strands of HCV RNA with an age-structured multiscale modeling approach. Using this model we also studied the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular replication and the release of new virions and fit the model to in vivo data obtained from HCV-infected subjects under therapy.

3.
Biomed Res Int ; 2014: 410457, 2014.
Article in English | MEDLINE | ID: mdl-25140313

ABSTRACT

The development of mathematical models of the immune response allows a better understanding of the multifaceted mechanisms of the defense system. The main purpose of this work is to present a scheme for coupling distinct models of different scales and aspects of the immune system. As an example, we propose a new model where the local tissue inflammation processes are simulated with partial differential equations (PDEs) whereas a system of ordinary differential equations (ODEs) is used as a model for the systemic response. The simulation of distinct scenarios allows the analysis of the dynamics of various immune cells in the presence of an antigen. Preliminary results of this approach with a sensitivity analysis of the coupled model are shown but further validation is still required.


Subject(s)
HLA-D Antigens , Immunity, Innate , Models, Theoretical , Computational Biology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL