Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
ACS Appl Mater Interfaces ; 16(1): 1737-1748, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38163250

ABSTRACT

Aluminum solid polymer capacitors are promising devices for the increased demand for power electronics applications. Nonetheless, the low breakdown voltage of commercially available catalysts (∼100 V) limits their applications. In this study, a hydroxide-film-covered high-purity aluminum was anodized at 700 V in boric acid at 85 °C, and the effect of a second hot water immersion (posthydration treatment) after anodizing on the breakdown voltage was studied as a possible future treatment to enhance the withstand voltages of solid electrolytic capacitors. The dielectric breakdown voltage of the anodized aluminum with a PEDOT:PSS coating was ∼500 V, being ∼200 V less than the anodizing voltage; however, the dielectric breakdown voltage was increased above 700 V by introducing the posthydration treatment due to the formation of a nanovoid layer above the dielectric alumina film. Our research suggests that the highly dispersed nanovoids incorporated with PEDOT:PSS avoid the current concentration at some local regions, effectively increasing the dielectric breakdown voltage. The posthydration treatment increased the leakage current by introducing physical defects in the dielectric film. However, the leakage current was reduced by a voltage sweep below the breakdown voltage after the PEDOT:PSS coating or a second anodizing process before the coating, keeping the breakdown voltage above 600 V. A promising processing route to obtain aluminum solid capacitors with high withstand voltage (600 V) found in our research is, first, dipping in hot water; second, anodizing at 700 V; then a second hot water treatment; and a second anodizing at 400 V, which keeps the capacitance invariable with a breakdown voltage enhanced.

2.
Article in English | MEDLINE | ID: mdl-38082582

ABSTRACT

This paper investigates upper-limb kinematic reaching responses during a mechanical perturbation to understand interjoint arm coordination used towards powered prosthesis control development. Common prosthesis arm controllers use electromyography sensors with data-driven models to decode muscle activation signals in controlling prosthesis joint movements. However, these control approaches produce non-natural, discrete movements with no guarantee the controller can react to unexpected disturbances during continuous task motion. Determining a continuous phase-dependent variable for measuring a human's progression during reaching can derive a time-invariant kinematic function to control the prosthesis joint in a natural, continuous manner. A perturbation experimental study was conducted across three participants in evaluating the shoulder and elbow joint kinematics to examine the existence of a phase shift during reaching. Experimental results demonstrated the effects of arm proximal-distal interjoint coordination that validated the proposed mechanical phase variable of the shoulder used in parameterizing elbow joint kinematic for reaching. This could allow for a continuous phase-based control strategy that can handle disturbances to achieve arm reaching in prosthesis control.


Subject(s)
Artificial Limbs , Elbow Joint , Humans , Arm/physiology , Shoulder/physiology , Elbow Joint/physiology , Movement/physiology
3.
Microorganisms ; 11(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37317329

ABSTRACT

Tryptophan is an essential amino acid required for tumor cell growth and is also the precursor to kynurenine, an immunosuppressive molecule that plays a role in limiting anticancer immunity. Tryptophanase (TNase) is an enzyme expressed by different bacterial species that converts tryptophan into indole, pyruvate and ammonia, but is absent in the Salmonella strain VNP20009 that has been used as a therapeutic delivery vector. We cloned the Escherichia coli TNase operon tnaCAB into the VNP20009 (VNP20009-tnaCAB), and were able to detect linear production of indole over time, using Kovács reagent. In order to conduct further experiments using the whole bacteria, we added the antibiotic gentamicin to stop bacterial replication. Using a fixed number of bacteria, we found that there was no significant effect of gentamicin on stationary phase VNP20009-tnaCAB upon their ability to convert tryptophan to indole over time. We developed a procedure to extract indole from media while retaining tryptophan, and were able to measure tryptophan spectrophotometrically after exposure to gentamicin-inactivated whole bacterial cells. Using the tryptophan concentration equivalent to that present in DMEM cell culture media, a fixed number of bacteria were able to deplete 93.9% of the tryptophan in the culture media in 4 h. In VNP20009-tnaCAB depleted tissue culture media, MDA-MB-468 triple negative breast cancer cells were unable to divide, while those treated with media exposed only to VNP20009 continued cell division. Re-addition of tryptophan to conditioned culture media restored tumor cell growth. Treatment of tumor cells with molar equivalents of the TNase products indole, pyruvate and ammonia only caused a slight increase in tumor cell growth. Using an ELISA assay, we confirmed that TNase depletion of tryptophan also limits the production of immunosuppressive kynurenine in IFNγ-stimulated MDA-MB-468 cancer cells. Our results demonstrate that Salmonella VNP20009 expressing TNase has improved potential to stop tumor cell growth and reverse immunosuppression.

4.
Front Microbiol ; 13: 919725, 2022.
Article in English | MEDLINE | ID: mdl-35935226

ABSTRACT

Synbiotics, mixtures of live microbes and substrates selectively utilized by host organisms, are of considerable interest due to their ability to improve gastrointestinal health. However, formulating synbiotics remains challenging, due in part, to the absence of rational strategies to assess these products for synbiotic activities prior to clinical trials. Currently, synbiotics are formulated as either complementary or synergistic. Complementary synbiotics are made by combining probiotics and prebiotics, with each component acting independently and with the combination shown to provide a clinical health benefit. Most commercial synbiotics as well as those used in clinical trials have been of the complementary type. In contrast, synergistic synbiotics require that the added microbe is specifically stimulated or it's persistence or activity are enhanced by the cognate substrate. Although several innovative examples have been described in the past few years based on this principle, in practice, relatively few synbiotic studies have tested for synergism. In this review, selected recent examples of complementary and synergistic synbiotics and the rationale for their formulation will be described. In addition, pre-clinical experimental approaches for identifying combinations that provide a basis for satisfying the requirements for synergism will be discussed.

5.
J Clin Virol ; 150-151: 105153, 2022 06.
Article in English | MEDLINE | ID: mdl-35472751

ABSTRACT

AIM: Anticipating local surges in COVID-19 cases has predominantly been based on observation of increasing cases. We sought to determine if temporal trends in SARS-CoV-2 Cycle threshold (Ct) values from clinical testing were predictive of future cases. METHODS: Data were collected from a large, safety-net hospital in Los Angeles, California. Ct values for all SARS-CoV-2 detections by the GeneXpert system (Cepheid) between October 2020 to March 2021 were analyzed. RESULTS: A total of 2,114 SARS-CoV-2-positive samples were included. Cases increased dramatically in December 2020, peaking the first week of January, before returning to pre-surge numbers by mid-February. Ct values fell during this same period, with values in December and January (25.6 ± 7.8 and 27±7.9, respectively) significantly lower than those of the other months (30±9.3 to 37.7 ± 6.3). Average weekly Ct values for all patients negatively correlated with the number of tests run two weeks in the future (r= -0.74, p<0.0001), whereas Ct values for asymptomatic patients negatively correlated most strongly with total number of tests performed one month later (r= -0.88, p<0.0001). Predictive modeling using these Ct values correctly predicted whether cases would increase or decrease 65% of the time for a subsequent surge (May-July 2021). CONCLUSIONS: During the largest COVID-19 surge in Los Angeles to date, we observed significantly lower Ct values (representing higher levels of viral RNA) suggesting that increased transmission of COVID-19 was temporarily associated with higher viral loads. Decreasing Ct values appear to be a leading indicator for predicting future COVID-19 cases, which can facilitate improved hospital-level surge planning.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Serologic Tests , Viral Load
6.
J Clin Microbiol ; 59(3)2021 02 18.
Article in English | MEDLINE | ID: mdl-33298613

ABSTRACT

With the approach of respiratory virus season in the Northern Hemisphere, clinical microbiology and public health laboratories will need rapid diagnostic assays to distinguish severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from influenza virus and respiratory syncytial virus (RSV) infections for diagnosis and surveillance. In this study, the clinical performance of the Xpert Xpress SARS-CoV-2/Flu/RSV test (Cepheid, Sunnyvale, CA, USA) for nasopharyngeal swab specimens was evaluated in four centers: Johns Hopkins Medical Microbiology Laboratory, Northwell Health Laboratories, NYC Public Health Laboratory, and Los Angeles County/University of Southern California (LAC+USC) Medical Center. A total of 319 nasopharyngeal swab specimens, positive for SARS-CoV-2 (n = 75), influenza A virus (n = 65), influenza B virus (n = 50), or RSV (n = 38) or negative (n = 91) by the standard-of-care nucleic acid amplification tests at each site, were tested using the Cepheid panel test. The overall positive percent agreement for the SARS-CoV-2 target was 98.7% (n = 74/75), and the negative agreement was 100% (n = 91), with all other analytes showing 100% total agreement (n = 153). Standard-of-care tests to which the Cepheid panel was compared included the Cepheid Xpert Xpress SARS-CoV-2, Cepheid Xpert Xpress Flu/RSV, GenMark ePlex respiratory panel, BioFire respiratory panel 2.1 and v1.7, DiaSorin Simplexa COVID-19 Direct, and Hologic Panther Fusion SARS-CoV-2 assays. The Xpert Xpress SARS-CoV-2/Flu/RSV test showed high sensitivity and accuracy for all analytes included in the test. This test will provide a valuable clinical diagnostic and public health solution for detecting and differentiating SARS-CoV-2, influenza A and B virus, and RSV infections during the current respiratory virus season.


Subject(s)
COVID-19/diagnosis , Influenza, Human/diagnosis , Molecular Diagnostic Techniques/methods , Humans , Nasopharynx , SARS-CoV-2 , Sensitivity and Specificity
7.
IEEE Trans Control Syst Technol ; 28(6): 2120-2135, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33041615

ABSTRACT

This paper proposes an extremum seeking controller (ESC) for simultaneously tuning the feedback control gains of a knee-ankle powered prosthetic leg using continuous-phase controllers. Previously, the proportional gains of the continuous-phase controller for each joint were tuned manually by trial-and-error, which required several iterations to achieve a balance between the prosthetic leg tracking error performance and the user's comfort. In this paper, a convex objective function is developed, which incorporates these two goals. We present a theoretical analysis demonstrating that the quasi-steady-state value of the objective function is independent of the controller damping gains. Furthermore, we prove the stability of error dynamics of continuous-phase controlled powered prosthetic leg along with ESC dynamics using averaging and singular perturbation tools. The developed cost function is then minimized by ESC in real-time to simultaneously tune the proportional gains of the knee and ankle joints. The optimum of the objective function shifts at different walking speeds, and our algorithm is suitably fast to track these changes, providing real-time adaptation for different walking conditions. Benchtop and walking experiments verify the effectiveness of the proposed ESC across various walking speeds.

8.
IEEE Access ; 7: 109840-109855, 2019.
Article in English | MEDLINE | ID: mdl-31656719

ABSTRACT

Although there has been recent progress in control of multi-joint prosthetic legs for rhythmic tasks such as walking, control of these systems for non-rhythmic motions and general real-world maneuvers is still an open problem. In this article, we develop a new controller that is capable of both rhythmic (constant-speed) walking, transitions between speeds and/or tasks, and some common volitional leg motions. We introduce a new piecewise holonomic phase variable, which, through a finite state machine, forms the basis of our controller. The phase variable is constructed by measuring the thigh angle, and the transitions in the finite state machine are formulated through sensing foot contact along with attributes of a nominal reference gait trajectory. The controller was implemented on a powered knee-ankle prosthesis and tested with a transfemoral amputee subject, who successfully performed a wide range of rhythmic and non-rhythmic tasks, including slow and fast walking, quick start and stop, backward walking, walking over obstacles, and kicking a soccer ball. Use of the powered leg resulted in clinically significant reductions in amputee compensations for rhythmic tasks (including vaulting and hip circumduction) when compared to use of the take-home passive leg. In addition, considerable improvements were also observed in the performance for non-rhythmic tasks. The proposed approach is expected to provide a better understanding of rhythmic and non-rhythmic motions in a unified framework, which in turn can lead to more reliable control of multi-joint prostheses for a wider range of real-world tasks.

9.
Appl Environ Microbiol ; 85(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31201276

ABSTRACT

Research on the role of diet on gut and systemic health has led to considerable interest toward identifying novel therapeutic modulators of the gut microbiome, including the use of prebiotics and probiotics. However, various host responses have often been reported among many clinical trials. This is in part due to competitive exclusion as a result of the absence of ecological niches as well as host-mediated constraints via colonization resistance. In this research, we developed a novel in vitro enrichment (IVE) method for isolating autochthonous strains that can function as synergistic synbiotics and overcome these constraints. The method relied on stepwise in vitro fecal fermentations to enrich for and isolate Bifidobacterium strains that ferment the prebiotic xylooligosaccharide (XOS). We subsequently isolated Bifidobacterium longum subsp. longum CR15 and then tested its establishment in 20 unique fecal samples with or without XOS. The strain was established in up to 18 samples but only in the presence of XOS. Our findings revealed that the IVE method is suitable for isolating potential synergistic probiotic strains that possess the genetic and biochemical ability to ferment specific prebiotic substrates. The IVE method can be used as an initial high-throughput screen for probiotic selection and isolation prior to further characterization and in vivo tests.IMPORTANCE This study describes an in vitro enrichment method to formulate synergistic synbiotics that have potential for establishing autochthonous strains across multiple individuals. The rationale for this approach-that the chance of survival of a bacterial strain is improved by providing it with its required resources-is based on classic ecological theory. From these experiments, a human-derived strain, Bifidobacterium longum subsp. longum CR15, was identified as a xylooligosaccharide (XOS) fermenter in fecal environments and displayed synergistic effects in vitro The high rate of strain establishment observed in this study provides a basis for using synergistic synbiotics to overcome the responder/nonresponder phenomenon that occurs frequently in clinical trials with probiotic and prebiotic interventions. In addition, this approach can be applied in other protocols that require enrichment of specific bacterial populations prior to strain isolation.


Subject(s)
Bifidobacterium/isolation & purification , Bifidobacterium/metabolism , Synbiotics/analysis , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bifidobacterium/genetics , Bifidobacterium/growth & development , Feces/microbiology , Fermentation , Gastrointestinal Microbiome , Glucuronates/metabolism , Humans , Oligosaccharides/metabolism , Phylogeny , Young Adult
10.
IEEE J Transl Eng Health Med ; 6: 2600209, 2018.
Article in English | MEDLINE | ID: mdl-30546971

ABSTRACT

This paper presents a potential solution to the challenge of configuring powered knee-ankle prostheses in a clinical setting. Typically, powered prostheses use impedance-based control schemes that contain several independent controllers which correspond to consecutive periods along the gait cycle. This control strategy has numerous control parameters and switching rules that are generally tuned by researchers or technicians and not by a certified prosthetist. We propose an intuitive clinician control interface (CCI) in which clinicians tune a powered knee-ankle prosthesis based on a virtual constraint control scheme, which tracks desired periodic joint trajectories based on a continuous measurement of the phase (or progression) of gait. The interface derives virtual constraints from clinician-designed joint kinematic trajectories. An experiment was conducted in which a certified prosthetist used the control interface to configure a powered knee-ankle prosthesis for a transfemoral amputee subject during level-ground walking trials. While it usually takes engineers hours of tuning individual parameters by trial and error, the CCI allowed the clinician to tune the powered prosthesis controller in under 10 min. This allowed the clinician to improve several amputee gait outcome metrics, such as gait symmetry. These results suggest that the CCI can improve the clinical viability of emerging powered knee-ankle prostheses.

11.
J Biomater Appl ; 33(5): 725-740, 2018 11.
Article in English | MEDLINE | ID: mdl-30444445

ABSTRACT

The optimal mechanical properties render magnesium widely used in industrial and biomedical applications. However, magnesium is highly reactive and unstable in aqueous solutions, which can be modulated to increase stability of reactive metals that include the use of alloys or by altering the surface with coatings. Plasma electrolytic oxidation is an efficient and tuneable method to apply a surface coating. By varying the plasma electrolytic oxidation parameters voltage, current density, time and (additives in the) electrolytic solution, the morphology, composition and surface energy of surface coatings are set. In the present study, we evaluated the influence on surface coatings of two solute additives, i.e. hexamethylenetetramine and mannitol, to base solutes silicate and potassium hydroxide. Results from in vitro studies in NaCl demonstrated an improvement in the corrosion resistance. In addition, coatings were obtained by a two-step anodization procedure, firstly anodizing in an electrolyte solution containing sodium fluoride and secondly in an electrolyte solution with hexamethylenetetramine and mannitol, respectively. Results showed that the first layer acts as a protective layer which improves the corrosion resistance in comparison with the samples with a single anodizing step. In conclusion, these coatings are promising candidates to be used in biomedical applications in particular because the components are non-toxic for the body and the rate of degradation of the surface coating is lower than that of pure magnesium.


Subject(s)
Coated Materials, Biocompatible/chemistry , Magnesium/chemistry , Cell Line , Coated Materials, Biocompatible/toxicity , Corrosion , Hemolysis/drug effects , Humans , Magnesium/toxicity , Mannitol/chemistry , Mannitol/toxicity , Materials Testing , Methenamine/chemistry , Methenamine/toxicity , Oxidation-Reduction , Surface Properties
12.
IEEE Trans Robot ; 34(3): 686-701, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30008623

ABSTRACT

Control systems for powered prosthetic legs typically divide the gait cycle into several periods with distinct controllers, resulting in dozens of control parameters that must be tuned across users and activities. To address this challenge, this paper presents a control approach that unifies the gait cycle of a powered knee-ankle prosthesis using a continuous, user-synchronized sense of phase. Virtual constraints characterize the desired periodic joint trajectories as functions of a phase variable across the entire stride. The phase variable is computed from residual thigh motion, giving the amputee control over the timing of the prosthetic joint patterns. This continuous sense of phase enabled three transfemoral amputee subjects to walk at speeds from 0.67 to 1.21 m/s and slopes from -2.5 to +9.0 deg. Virtual constraints based on task-specific kinematics facilitated normative adjustments in joint work across walking speeds. A fixed set of control gains generalized across these activities and users, which minimized the configuration time of the prosthesis.

13.
IEEE Trans Control Syst Technol ; 26(1): 305-312, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29403259

ABSTRACT

This brief presents a novel control strategy for a powered knee-ankle prosthesis that unifies the entire gait cycle, eliminating the need to switch between controllers during different periods of gait. A reduced-order Discrete Fourier Transformation (DFT) is used to define virtual constraints that continuously parameterize periodic joint patterns as functions of a mechanical phasing variable. In order to leverage the provable stability properties of Hybrid Zero Dynamics (HZD), hybrid-invariant Bézier polynomials are converted into unified DFT virtual constraints for various walking speeds. Simulations of an amputee biped model show that the unified prosthesis controller approximates the behavior of the original HZD design under ideal scenarios and has advantages over the HZD design when hybrid invariance is violated by mismatches with the human controller. Two implementations of the unified virtual constraints, a feedback linearizing controller and a more practical joint impedance controller, produce similar results in simulation.

14.
J Biomed Mater Res A ; 106(5): 1341-1354, 2018 05.
Article in English | MEDLINE | ID: mdl-29316200

ABSTRACT

Nanotubular structures were generated on the surface of titanium c.p. by anodization technique in an aqueous solution of acetic acid (14% v/v) with different sources of fluoride ion (HF, NaF, NH4 F). The aim of using these three different compounds is to study the effect of the counterion (H+ , Na+ and NH4+) on the morphology, wettability and surface free energy of the modified surface. Nanotubes were generated at 10 and 15 V for each anodizing solution. To further improve surface characteristics, the samples were heat-treated at 600°C for 4 h and at 560°C for 3 h. SEM images revealed the formation of nanotubes in all anodizing conditions, while their diameter increased proportionally to the electric potential. X-ray diffraction and micro-Raman spectroscopy results showed the presence of both anatase and rutile phases, with a higher content of rutile in the coatings obtained using NH4 F and an applied potential of 10 V. The heat-treatment significantly increased the wettability of the anodic coatings, especially for the coating obtained at 15 V with HF, which showed values < 7 degrees of contact angle. Besides, the nanotubes show a decrease in diameter due to the heat treatment, except for the nanotubes formed in NH4 F. Depending on their surface properties (e.g. low contact angle and high surface free energy), these coatings potentially have great potential in biomedical applications, sensors devices, and catalytic applications among others. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1341-1354, 2018.


Subject(s)
Biocompatible Materials/chemistry , Nanotubes/chemistry , Titanium/chemistry , Cell Death , Cell Line, Tumor , Coated Materials, Biocompatible/pharmacology , Electric Conductivity , Electrodes , Electrolytes/chemistry , Humans , Osteoblasts/cytology , Osteoblasts/ultrastructure , Spectrum Analysis, Raman , Thermodynamics , Wettability , X-Ray Diffraction
15.
Rep U S ; 2018: 2292-2298, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30746286

ABSTRACT

Although there has been recent progress in control of multi-joint prosthetic legs for periodic tasks such as walking, volitional control of these systems for non-periodic maneuvers is still an open problem. In this paper, we develop a new controller that is capable of both periodic walking and common volitional leg motions based on a piecewise holonomic phase variable through a finite state machine. The phase variable is constructed by measuring the thigh angle, and the transitions in the finite state machine are formulated through sensing foot contact together with attributes of a nominal reference gait trajectory. The controller was implemented on a powered knee-ankle prosthesis and tested with a transfemoral amputee subject, who successfully performed a wide range of periodic and non-periodic tasks, including low- and high-speed walking, quick start and stop, backward walking, walking over obstacles, and kicking a soccer ball. The proposed approach is expected to provide better understanding of volitional motions and lead to more reliable control of multi-joint prostheses for a wider range of tasks.

16.
J Microbiol Biotechnol ; 28(12): 2079-2094, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30661346

ABSTRACT

Sunflower trypsin inhibitor (SFTI) is a 14-amino-acid bicyclic peptide that contains a single internal disulfide bond. We initially constructed chimeras of SFTI with N-terminal secretion signals from the Escherichia coli OmpA and Pseudomonas aeruginosa ToxA, but only detected small amounts of protease inhibition resulting from these constructs. A substantially higher degree of protease inhibition was detected from a C-terminal SFTI fusion with E. coli YebF, which radiated more than a centimeter from an individual colony of E. coli using a culture-based inhibitor assay. Inhibitory activity was further improved in YebF-SFTI fusions by the addition of a trypsin cleavage signal immediately upstream of SFTI, and resulted in production of a 14-amino-acid, disulfide-bonded SFTI free in the culture supernatant. To assess the potential of the secreted SFTI to protect the ability of a cytotoxic protein to kill tumor cells, we utilized a tumor-selective form of the Pseudomonas ToxA (OTG-PE38K) alone and expressed as a polycistronic construct with YebF-SFTI in the tumor-targeted Salmonella VNP20009. When we assessed the ability of toxin-containing culture supernatants to kill MDA-MB-468 breast cancer cells, the untreated OTG-PE38K was able to eliminate all detectable tumor cells, while pretreatment with trypsin resulted in the complete loss of anticancer cytotoxicity. However, when OTG-PE38K was co-expressed with YebF-SFTI, cytotoxicity was completely retained in the presence of trypsin. These data demonstrate SFTI chimeras are secreted in a functional form and that co-expression of protease inhibitors with therapeutic proteins by tumor-targeted bacteria has the potential to enhance the activity of therapeutic proteins by suppressing their degradation within a proteolytic environment.


Subject(s)
Chimera , Peptides, Cyclic/pharmacology , Protease Inhibitors/pharmacology , Protective Agents/pharmacology , Proteolysis , Salmonella/genetics , Salmonella/metabolism , ADP Ribose Transferases/genetics , Amino Acid Sequence , Bacterial Outer Membrane Proteins/genetics , Bacterial Toxins/genetics , Biological Transport , Breast Neoplasms/drug therapy , Cell Line, Tumor/drug effects , Disulfides , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Exotoxins/genetics , Female , Humans , Neoplasms/drug therapy , Peptides, Cyclic/genetics , Protease Inhibitors/metabolism , Protein Engineering , Pseudomonas aeruginosa/genetics , Recombinant Fusion Proteins/genetics , Trypsin/metabolism , Virulence Factors/genetics , Pseudomonas aeruginosa Exotoxin A
17.
IEEE Int Conf Rehabil Robot ; 2017: 1425-1430, 2017 07.
Article in English | MEDLINE | ID: mdl-28814020

ABSTRACT

Many control methods have been proposed for powered prosthetic legs, ranging from finite state machines that switch between discrete phases of gait to unified controllers that have a continuous sense of phase. In particular, recent work has shown that a mechanical phase variable can parameterize the entire gait cycle for controlling a prosthetic leg during steady rhythmic locomotion. However, the unified approach does not provide voluntary control over non-rhythmic motions like stepping forward and back. In this paper we present a phasing algorithm that uses the amputee's hip angle to control both rhythmic and non-rhythmic motion through two modes: 1) a piecewise (PW) function that provides users voluntary control over stance and swing in a piecewise manner, and 2) a unified function that continuously synchronizes the motion of the prosthetic leg with the amputee user at different walking speeds. The two phase variable approaches are compared in experiments with a powered knee-ankle prosthesis used by an above-knee amputee subject.


Subject(s)
Algorithms , Artificial Limbs , Leg/physiology , Robotics/instrumentation , Humans , Signal Processing, Computer-Assisted/instrumentation , Walking/physiology , Wearable Electronic Devices
18.
Implant Dent ; 26(3): 423-428, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28486355

ABSTRACT

INTRODUCTION: This in vitro study aimed to evaluate the ability of air-powder abrasion to decontaminate dental implants. MATERIALS AND METHODS: Twenty-six implants were inoculated with a Streptococcus sanguinis biofilm media in a novel periimplantitis defect model. Six implants served as controls, and 20 implants were disinfected with either the Cavitron JET Plus or the AIR-FLOW PERIO air-powder abrasion units. Residual bacteria were cultured, and colony forming units (CFUs) were totaled at 24 hours. RESULTS: As expected, negative control implant cultures showed no evidence of viable bacteria. Bacterial growth was observed on all positive control cultures, whereas only 15% of the experimental cultures displayed evidence of viable bacteria. The average CFU per streak for the positive control was 104 compared with a maximum of 10 and 4 CFUs for the Cavitron JET Plus and AIR-FLOW PERIO, respectively. There was a 99.9% reduction in bacteria for both air-powder abrasion instruments. CONCLUSION: Air-powder abrasion is an effective technique for the decontamination of dental implants, and the Cavitron JET Plus and AIR-FLOW PERIO are equally successful at eliminating viable bacteria from implant surfaces.


Subject(s)
Air Abrasion, Dental/methods , Dental Implants/microbiology , Disinfection/methods , Peri-Implantitis/prevention & control , Biofilms , In Vitro Techniques , Powders , Streptococcus sanguis , Surface Properties
19.
Control Technol Appl ; 2017: 847-852, 2017 08.
Article in English | MEDLINE | ID: mdl-30148285

ABSTRACT

Human gait involves a repetitive cycle of movements, and the phase of gait represents the location in this cycle. Gait phase is measured across many areas of study (e.g., for analyzing gait and controlling powered lower-limb prosthetic and orthotic devices). Current gait phase detection methods measure discrete gait events (e.g., heel strike, flat foot, toe off, etc.) by placing multiple sensors on the subject's lower-limbs. Using multiple sensors can create difficulty in experimental setup and real-time data processing. In addition, detecting only discrete events during the gait cycle limits the amount of information available during locomotion. In this paper we propose a real-time and continuous measurement of gait phase parameterized by a mechanical variable (i.e., phase variable) from a single sensor measuring the human thigh motion. Human subject experiments demonstrate the ability of the phase variable to accurately parameterize gait progression for different walking/running speeds (1 to 9 miles/hour). Our results show that this real-time method can also estimate gait speed from the same sensor.

20.
IEEE Access ; 4: 893-904, 2016.
Article in English | MEDLINE | ID: mdl-27570719

ABSTRACT

Bipedal locomotion is a popular area of study across multiple fields (e.g., biomechanics, neuroscience and robotics). Different hypotheses and models have tried explaining how humans achieve stable locomotion. Perturbations that produce shifts in the nominal periodic orbit of the joint kinematics during locomotion could inform about the manner in which the human neuromechanics represent the phase of gait. Ideally, this type of perturbation would modify the progression of the human subject through the gait cycle without deviating from the nominal kinematic orbits of the leg joints. However, there is a lack of publicly available experimental data with this type of perturbation. This paper presents the design and validation of a perturbation mechanism and an experimental protocol capable of producing phase-shifting perturbations of the gait cycle. The effects of this type of perturbation on the gait cycle are statistically quantified and analyzed in order to show that a clean phase shift in the gait cycle was achieved. The data collected during these experiments will be publicly available for the scientific community to test different hypotheses and models of human locomotion.

SELECTION OF CITATIONS
SEARCH DETAIL
...