Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Science ; 384(6699): 1007-1012, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38815022

ABSTRACT

The evolutionary histories of major clades, including mammals, often comprise changes in their diversification dynamics, but how these changes occur remains debated. We combined comprehensive phylogenetic and fossil information in a new "birth-death diffusion" model that provides a detailed characterization of variation in diversification rates in mammals. We found an early rising and sustained diversification scenario, wherein speciation rates increased before and during the Cretaceous-Paleogene (K-Pg) boundary. The K-Pg mass extinction event filtered out more slowly speciating lineages and was followed by a subsequent slowing in speciation rates rather than rebounds. These dynamics arose from an imbalanced speciation process, with separate lineages giving rise to many, less speciation-prone descendants. Diversity seems to have been brought about by these isolated, fast-speciating lineages, rather than by a few punctuated innovations.


Subject(s)
Extinction, Biological , Fossils , Genetic Speciation , Mammals , Phylogeny , Animals , Biodiversity , Mammals/classification , Mammals/genetics
2.
Proc Natl Acad Sci U S A ; 120(20): e2220672120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37159475

ABSTRACT

The extraordinary number of species in the tropics when compared to the extra-tropics is probably the most prominent and consistent pattern in biogeography, suggesting that overarching processes regulate this diversity gradient. A major challenge to characterizing which processes are at play relies on quantifying how the frequency and determinants of tropical and extra-tropical speciation, extinction, and dispersal events shaped evolutionary radiations. We address this question by developing and applying spatiotemporal phylogenetic and paleontological models of diversification for tetrapod species incorporating paleoenvironmental variation. Our phylogenetic model results show that area, energy, or species richness did not uniformly affect speciation rates across tetrapods and dispute expectations of a latitudinal gradient in speciation rates. Instead, both neontological and fossil evidence coincide in underscoring the role of extra-tropical extinctions and the outflow of tropical species in shaping biodiversity. These diversification dynamics accurately predict present-day levels of species richness across latitudes and uncover temporal idiosyncrasies but spatial generality across the major tetrapod radiations.


Subject(s)
Biodiversity , Biological Evolution , Phylogeny , Dissent and Disputes , Fossils
3.
Proc Biol Sci ; 289(1975): 20220091, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35611527

ABSTRACT

How and why lineages evolve along with niche space as they diversify and adapt to different environments is fundamental to evolution. Progress has been hampered by the difficulties of linking a robust empirical characterization of species niches with flexible evolutionary models that describe their evolution. Consequently, the relative influence of abiotic and biotic factors remains poorly understood. Here, we characterize species' two-dimensional temperature and precipitation niche space occupied (i.e. species niche envelope) as complex geometries and assess their evolution across all Aves using a model that captures heterogeneous evolutionary rates on time-calibrated phylogenies. We find that extant birds coevolved from warm, mesic climatic niches into colder and drier environments and responded to the Cretaceous-Palaeogene (K-Pg) boundary with a dramatic increase in disparity. Contrary to expectations of subsiding rates of niche evolution, our results show that overall rates have increased steadily, with some lineages experiencing exceptionally high evolutionary rates, associated with the colonization of novel niche spaces, and others showing niche stasis. Both competition- and environmental change-driven niche evolution transpire and result in highly heterogeneous rates near the present. Our findings highlight the growing ecological and conservation insights arising from the model-based integration of comprehensive environmental and phylogenetic information.


Subject(s)
Biological Evolution , Ecosystem , Animals , Birds , Phylogeny , Temperature
4.
Ecol Lett ; 25(6): 1365-1375, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35343052

ABSTRACT

Nests are essential constructions that determine fitness, yet their structure can vary substantially across bird species. While there is evidence supporting a link between nest architecture and the habitat a species occupies, we still ignore what ecological and evolutionary processes are linked to different nest types. Using information on 3175 species of songbirds, we show that-after controlling for latitude and body size-species that build domed nests (i.e. nests with a roof) have smaller ranges, are less likely to colonise urban environments and have potentially higher extinction rates compared to species with open and cavity nests. Domed nests could be a costly specialisation, and we show that these nests take more time to be built, which could restrict breeding opportunities. These diverse strands of evidence suggest that the transition from domed to open nests in passerines could represent an important evolutionary innovation behind the success of the largest bird radiation.


Subject(s)
Songbirds , Animals , Biological Evolution , Body Size , Ecosystem , Nesting Behavior
5.
Proc Natl Acad Sci U S A ; 119(13): e2116948119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35333650

ABSTRACT

SignificanceGeography molds how species evolve in space. Strong geographical barriers to movement, for instance, both inhibit dispersal between regions and allow isolated populations to diverge as new species. Weak barriers, by contrast, permit species range expansion and persistence. These factors present a conundrum: How strong must a barrier be before between-region speciation outpaces dispersal? We designed a phylogenetic model of dispersal, extinction, and speciation that allows regional features to influence rates of biogeographic change and applied it to the neotropical radiation of Anolis lizards. Separation by water induces a threefold steeper barrier to movement than equivalent distances over land. Our model will help biologists detect relationships between evolutionary processes and the spatial contexts in which they operate.


Subject(s)
Lizards , Animals , Biological Evolution , Genetic Speciation , Geography , Phylogeny , Phylogeography
6.
Ecol Lett ; 24(2): 196-207, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33124188

ABSTRACT

Mountain systems are exceptionally species rich, yet the associated elevational gradients in functional and phylogenetic diversity and their consistency across latitude remain little understood. Here, we document how avian functional and phylogenetic diversity and structure vary along all major elevational gradients worldwide and uncover strong latitudinal differences. Assemblages in warm tropical lowlands and cold temperate highlands are marked by high functional overdispersion and distinctiveness, whereas tropical highlands and temperate lowlands appear strongly functionally clustered and redundant. We additionally find strong geographic variation in the interplay of phylogenetic and functional structure, with strongest deviations between the two in temperate highlands. This latitudinal and elevational variation in assemblage functional structure is underpinned by nuanced shifts in the position, shape and composition of multivariate trait space. We find that, independent of latitude, high-elevation assemblages emerge as exceptionally susceptible to functional change.


Subject(s)
Biodiversity , Birds , Animals , Phylogeny
7.
Syst Biol ; 69(4): 739-755, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31860094

ABSTRACT

Biotic interactions are hypothesized to be one of the main processes shaping trait and biogeographic evolution during lineage diversification. Theoretical and empirical evidence suggests that species with similar ecological requirements either spatially exclude each other, by preventing the colonization of competitors or by driving coexisting populations to extinction, or show niche divergence when in sympatry. However, the extent and generality of the effect of interspecific competition in trait and biogeographic evolution has been limited by a dearth of appropriate process-generating models to directly test the effect of biotic interactions. Here, we formulate a phylogenetic parametric model that allows interdependence between trait and biogeographic evolution, thus enabling a direct test of central hypotheses on how biotic interactions shape these evolutionary processes. We adopt a Bayesian data augmentation approach to estimate the joint posterior distribution of trait histories, range histories, and coevolutionary process parameters under this analytically intractable model. Through simulations, we show that our model is capable of distinguishing alternative scenarios of biotic interactions. We apply our model to the radiation of Darwin's finches-a classic example of adaptive divergence-and find limited support for in situ trait divergence in beak size, but stronger evidence for convergence in traits such as beak shape and tarsus length and for competitive exclusion throughout their evolutionary history. These findings are more consistent with presympatric, rather than postsympatric, niche divergence. Our modeling framework opens new possibilities for testing more complex hypotheses about the processes underlying lineage diversification. More generally, it provides a robust probabilistic methodology to model correlated evolution of continuous and discrete characters. [Bayesian; biotic interactions; competition; data augmentation; historical biogeography; trait evolution.].


Subject(s)
Biological Evolution , Classification/methods , Models, Biological , Animals , Computer Simulation , Finches/classification
8.
Nature ; 555(7695): 246-250, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29466335

ABSTRACT

Mountain ranges harbour exceptionally high biodiversity, which is now under threat from rapid environmental change. However, despite decades of effort, the limited availability of data and analytical tools has prevented a robust and truly global characterization of elevational biodiversity gradients and their evolutionary origins. This has hampered a general understanding of the processes involved in the assembly and maintenance of montane communities. Here we show that a worldwide mid-elevation peak in bird richness is driven by wide-ranging species and disappears when we use a subsampling procedure that ensures even species representation in space and facilitates evolutionary interpretation. Instead, richness corrected for range size declines linearly with increasing elevation. We find that the more depauperate assemblages at higher elevations are characterized by higher rates of diversification across all mountain regions, rejecting the idea that lower recent diversification rates are the general cause of less diverse biota. Across all elevations, assemblages on mountains with high rates of past temperature change exhibit more rapid diversification, highlighting the importance of climatic fluctuations in driving the evolutionary dynamics of mountain biodiversity. While different geomorphological and climatic attributes of mountain regions have been pivotal in determining the remarkable richness gradients observed today, our results underscore the role of ongoing and often very recent diversification processes in maintaining the unique and highly adapted biodiversity of higher elevations.


Subject(s)
Altitude , Biodiversity , Birds/classification , Geographic Mapping , Animals , Birds/genetics , Species Specificity
9.
Syst Biol ; 64(6): 1059-73, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26254671

ABSTRACT

Spatial variation in biodiversity is the result of complex interactions between evolutionary history and ecological factors. Methods in historical biogeography combine phylogenetic information with current species locations to infer the evolutionary history of a clade through space and time. A major limitation of most methods for historical biogeographic inference is the requirement of single locations for terminal lineages, reducing contemporary species geographical ranges to a point in two-dimensional space. In reality, geographic ranges usually show complex geographic patterns, irregular shapes, or discontinuities. In this article, we describe a method for phylogeographic analysis using polygonal species geographic ranges of arbitrary complexity. By integrating the geographic diversification process across species ranges, we provide a method to infer the geographic location of ancestors in a Bayesian framework. By modeling migration conditioned on a phylogenetic tree, this approach permits reconstructing the geographic location of ancestors through time. We apply this new method to the diversification of two neotropical bird genera, Trumpeters (Psophia) and Cinclodes ovenbirds. We demonstrate the usefulness of our method (called rase) in phylogeographic reconstruction of species ancestral locations and contrast our results with previous methods that compel researchers to reduce the distribution of species to one point in space. We discuss model extensions to enable a more general, spatially explicit framework for historical biogeographic analysis.


Subject(s)
Animal Distribution , Birds/classification , Phylogeography/methods , Animals , Phylogeny , South America
10.
Am Nat ; 184(3): 352-63, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25141144

ABSTRACT

Many organisms exhibit distinct breeding seasons tracking food availability. If conspecific populations inhabit areas that experience different temporal cycles in food availability spurred by variation in precipitation regimes, then they should display asynchronous breeding seasons. Thus, such populations might exhibit a temporal barrier to gene flow, which may potentially promote genetic differentiation. We test a central prediction of this hypothesis, namely, that individuals living in areas with more asynchronous precipitation regimes should be more genetically differentiated than individuals living in areas with more similar precipitation regimes. Using mitochondrial DNA sequences, climatic data, and geographical/ecological distances between individuals of 57 New World bird species mostly from the tropics, we examined the effect of asynchronous precipitation (a proxy for asynchronous resource availability) on genetic differentiation. We found evidence for a positive and significant cross-species effect of precipitation asynchrony on genetic distance after accounting for geographical/ecological distances, suggesting that current climatic conditions may play a role in population differentiation. Spatial asynchrony in climate may thus drive evolutionary divergence in the absence of overt geographic barriers to gene flow; this mechanism contrasts with those invoked by most models of biotic diversification emphasizing physical or ecological changes to the landscape as drivers of divergence.


Subject(s)
Birds/genetics , Climate , Genetics, Population , Rain , Reproduction/genetics , Americas , Animals , Base Sequence , DNA, Mitochondrial/genetics , Gene Flow , Genetic Variation , Geography , Models, Genetic , Phylogeny , Seasons , Species Specificity
11.
Ecol Lett ; 16(8): 1095-103, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23800223

ABSTRACT

A key question in predicting responses to anthropogenic climate change is: how quickly can species adapt to different climatic conditions? Here, we take a phylogenetic approach to this question. We use 17 time-calibrated phylogenies representing the major tetrapod clades (amphibians, birds, crocodilians, mammals, squamates, turtles) and climatic data from distributions of > 500 extant species. We estimate rates of change based on differences in climatic variables between sister species and estimated times of their splitting. We compare these rates to predicted rates of climate change from 2000 to 2100. Our results are striking: matching projected changes for 2100 would require rates of niche evolution that are > 10,000 times faster than rates typically observed among species, for most variables and clades. Despite many caveats, our results suggest that adaptation to projected changes in the next 100 years would require rates that are largely unprecedented based on observed rates among vertebrate species.


Subject(s)
Biological Evolution , Climate Change , Ecosystem , Vertebrates/physiology , Adaptation, Biological , Animals , Climate , Models, Biological , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL