Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav ; 13(8): e3142, 2023 08.
Article in English | MEDLINE | ID: mdl-37407501

ABSTRACT

OBJECTIVES: Fragile X syndrome is the main monogenetic cause of intellectual disability and autism. Alterations in the immune system are commonly found in these developmental disorders. We and others have demonstrated that Fmr1 mutant mice present an altered response to immune stimuli. However, whether this altered immune response can influence the Fmr1 mutant behavioral outcomes in response to inflammation has not been fully investigated. MATERIALS AND METHODS: In the current study, we examine the behavioral sickness response of male wildtype and knockout  mice to the innate immune stimulus lipopolysaccharide (LPS) (0.1 mg/kg) to determine if Fmr1 mutants have altered sickness behavior. We used an enzyme-linked immunosorbent assay (ELISA) to measure changes in the cytokine interleukin-6 (IL-6) to determine that inflammation was induced in the mice. Sickness behavior was assessed in a wheel-running paradigm, and a tail suspension test was used to assess the depressive-like phenotype that follows sickness behavior in response to LPS. RESULTS: The ELISA using blood serum confirmed a significant increase in IL-6 in mice that were treated with LPS. Treated Fmr1 mutants exhibited decreased distance traveled in the wheel running after LPS administration, similar to treated controls. Another cohort of animals treated with LPS were tested in the tail suspension test and exhibited no alterations in immobility time in response to LPS. CONCLUSION: Together, our data suggest that Fmr1 mutant mice do not have altered sickness behavior in response to a low dose of LPS.


Subject(s)
Fragile X Mental Retardation Protein , Illness Behavior , Animals , Male , Mice , Behavior, Animal , Depression/drug therapy , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Illness Behavior/physiology , Inflammation/chemically induced , Interleukin-6 , Lipopolysaccharides/pharmacology , Mice, Knockout , Motor Activity/physiology
2.
Brain Sci ; 12(10)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36291318

ABSTRACT

Integration of sensory signals that emanate from the same source, such as the visual of lip articulations and the sound of the voice of a speaking individual, can improve perception of the source signal (e.g., speech). Because momentary sensory inputs are typically corrupted with internal and external noise, there is almost always a discrepancy between the inputs, facing the perceptual system with the problem of determining whether the two signals were caused by the same source or different sources. Thus, whether or not multisensory stimuli are integrated and the degree to which they are bound is influenced by factors such as the prior expectation of a common source. We refer to this factor as the tendency to bind stimuli, or for short, binding tendency. In theory, the tendency to bind sensory stimuli can be learned by experience through the acquisition of the probabilities of the co-occurrence of the stimuli. It can also be influenced by cognitive knowledge of the environment. The binding tendency varies across individuals and can also vary within an individual over time. Here, we review the studies that have investigated the plasticity of binding tendency. We discuss the protocols that have been reported to produce changes in binding tendency, the candidate learning mechanisms involved in this process, the possible neural correlates of binding tendency, and outstanding questions pertaining to binding tendency and its plasticity. We conclude by proposing directions for future research and argue that understanding mechanisms and recipes for increasing binding tendency can have important clinical and translational applications for populations or individuals with a deficiency in multisensory integration.

3.
Behav Brain Res ; 410: 113317, 2021 07 23.
Article in English | MEDLINE | ID: mdl-33910029

ABSTRACT

Epilepsy is one of the most common neurological disorders, with individuals having an increased susceptibility of seizures in the first few years of life, making children at risk of developing a multitude of cognitive and behavioral comorbidities throughout development. The present study examined the role of PI3K/Akt/mTOR pathway activity and neuroinflammatory signaling in the development of autistic-like behavior following seizures in the neonatal period. Male and female C57BL/6J mice were administered 3 flurothyl seizures on postnatal (PD) 10, followed by administration of minocycline, the mTOR inhibitor rapamycin, or a combined treatment of both therapeutics. On PD12, isolation-induced ultrasonic vocalizations (USVs) of mice were examined to determine the impact of seizures and treatment on communicative behaviors, a component of the autistic-like phenotype. Seizures on PD10 increased the quantity of USVs in female mice and reduced the amount of complex call types emitted in males compared to controls. Inhibition of mTOR with rapamycin significantly reduced the quantity and duration of USVs in both sexes. Changes in USVs were associated with increases in mTOR and astrocyte levels in male mice, however, three PD10 seizures did not result in enhanced proinflammatory cytokine expression in either sex. Beyond inhibition of mTOR activity by rapamycin, both therapeutics did not demonstrate beneficial effects. These findings emphasize the importance of differences that may exist across preclinical seizure models, as three flurothyl seizures did not induce as drastic of changes in mTOR activity or inflammation as observed in other rodent models.


Subject(s)
Epilepsy , Immunologic Factors/pharmacology , MTOR Inhibitors/pharmacology , Minocycline/pharmacology , Seizures , Sirolimus/pharmacology , Vocalization, Animal/drug effects , Animals , Convulsants/pharmacology , Disease Models, Animal , Epilepsy/chemically induced , Epilepsy/immunology , Epilepsy/metabolism , Epilepsy/physiopathology , Female , Flurothyl/pharmacology , Male , Mice , Mice, Inbred C57BL , Seizures/chemically induced , Seizures/immunology , Seizures/metabolism , Seizures/physiopathology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...