Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mycologia ; : 1-8, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913569

ABSTRACT

Amanita is one of the most salient mushroom genera due to its cultural, economic, and medical importance. Recently, many new Amanita species have been described worldwide, increasing the genus richness. However, several clades have cryptic diversity, and many species complexes have not yet been resolved. This is the case of the rubescent species in the Validae section, which have been widely cited under the name Amanita rubescens s.l. We used a four-locus matrix (nuc rDNA internal transcribed spacer [ITS] and 28S regions and genes for RNA polymerase II subunit 2 [rpb2], translation elongation factor 1-α [tef1-α], and ß-tubulin [tub2]) to solve the phylogenetic relationships within the Amanita section Validae. To analyze the diversity and distribution patterns of species, we used an extensive ITS sequence sampling including environmental DNA databases. The phylogenetic analyses demonstrated that the Validae section is divided into three monophyletic and highly supported major clades: Mappae, Validae, and Rubescentes. At least 11 species-level clades within the Rubescentes clade were highly supported: A. cruentilemurum nom. prov. A. brunneolocularis, A. rubescens s.s. (European clade), A. rubescens s.s. (Asiatic clade), A. orsonii s.s. A. 'orsonii,' A. aureosubucula nom. prov., A. novinupta, A. flavorubens, and two undescribed North American species. We proved that A. rubescens s.s. has two segregated populations (European and Asiatic) and it is not naturally distributed in America. Furthermore, we found that America has more cryptic species within the Rubescentes clade than Eurasia.

2.
Microb Genom ; 10(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38529901

ABSTRACT

Genome assembly and annotation using short-paired reads is challenging for eukaryotic organisms due to their large size, variable ploidy and large number of repetitive elements. However, the use of single-molecule long reads improves assembly quality (completeness and contiguity), but haplotype duplications still pose assembly challenges. To address the effect of read length on genome assembly quality, gene prediction and annotation, we compared genome assemblers and sequencing technologies with four strains of the ectomycorrhizal fungus Laccaria trichodermophora. By analysing the predicted repertoire of carbohydrate enzymes, we investigated the effects of assembly quality on functional inferences. Libraries were generated using three different sequencing platforms (Illumina Next-Seq, Mi-Seq and PacBio Sequel), and genomes were assembled using single and hybrid assemblies/libraries. Long reads or hybrid assemby resolved the collapsing of repeated regions, but the nuclear heterozygous versions remained unresolved. In dikaryotic fungi, each cell includes two nuclei and each nucleus has differences not only in allelic gene version but also in gene composition and synteny. These heterokaryotic cells produce fragmentation and size overestimation of the genome assembly of each nucleus. Hybrid assembly revealed a wider functional diversity of genomes. Here, several predicted oxidizing activities on glycosyl residues of oligosaccharides and several chitooligosaccharide acetylase activities would have passed unnoticed in short-read assemblies. Also, the size and fragmentation of the genome assembly, in combination with heterozygosity analysis, allowed us to distinguish homokaryotic and heterokaryotic strains isolated from L. trichodermophora fruit bodies.


Subject(s)
Genome , Laccaria , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA , Haplotypes
3.
Ecol Evol ; 13(3): e9838, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911302

ABSTRACT

Several Mesoamerican crops constitute wild-to-domesticated complexes generated by multiple initial domestication events, and continuous gene flow among crop populations and between these populations and their wild relatives. It has been suggested that the domestication of cotton (Gossypium hirsutum) started in the northwest of the Yucatán Peninsula, from where it spread to other regions inside and outside of Mexico. We tested this hypothesis by assembling chloroplast genomes of 23 wild, landraces, and breeding lines (transgene-introgressed and conventional). The phylogenetic analysis showed that the evolutionary history of cotton in Mexico involves multiple events of introgression and genetic divergence. From this, we conclude that Mexican landraces arose from multiple wild populations. Our results also revealed that their structural and functional chloroplast organizations had been preserved. However, genetic diversity decreases as a consequence of domestication, mainly in transgene-introgressed (TI) individuals (π = 0.00020, 0.00001, 0.00016, 0, and 0, of wild, TI-wild, landraces, TI-landraces, and breeding lines, respectively). We identified homologous regions that differentiate wild from domesticated plants and indicate a relationship among the samples. A decrease in genetic diversity associated with transgene introgression in cotton was identified for the first time, and our outcomes are therefore relevant to both biosecurity and agrobiodiversity conservation.

4.
Fungal Biol ; 124(3-4): 205-218, 2020.
Article in English | MEDLINE | ID: mdl-32220381

ABSTRACT

In order to increase survival rates of greenhouse seedlings destined for restoration and conservation programs, successful mycorrhization of the seedlings is necessary. To reforest forest ecosystems, host trees must be inoculated with ectomycorrhizal fungi and, in order to guarantee a sufficient supply of ectomycorrhizal inoculum, it is necessary to develop technologies for the mass production of ectomycorrhizal fungi mycelia. We selected the ectomycorrhizal fungus Laccaria trichodermophora, due to its ecological traits and feasible mycelia production in asymbiotic conditions. Here, we report the field sampling of genetic resources, as well as the highly productive nutritional media and cultivation parameters in solid cultures. Furthermore, in order to achieve high mycelial production, we used strain screening and evaluated pH, carbon source concentration, and culture conditions of submerged cultures in normal and baffled shake flasks. The higher productivity culture conditions in shake flasks were selected for evaluation in a pneumatic bioreactor, using modified BAF media with a 10 g/L glucose, pH 5.5, 25 °C, and a volumetric oxygen transfer coefficient (KLa) of 36 h-1. Under those conditions less biomass (12-37 %) was produced in the pneumatic bioreactor compared with the baffled shake flasks. This approach shows that L. trichodermophora can generate a large biomass concentration and constitute the biotechnological foundation of its mycelia mass production.


Subject(s)
Bioreactors/microbiology , Laccaria , Mycelium/growth & development , Mycorrhizae , Agaricales , Biomass , Conservation of Natural Resources , Culture Media/chemistry , Forests , Laccaria/growth & development , Laccaria/isolation & purification , Mycorrhizae/growth & development , Mycorrhizae/isolation & purification , Oxygen/supply & distribution , Seedlings/microbiology , Trees/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...