Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3112, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600084

ABSTRACT

Bell nonlocality refers to correlations between two distant, entangled particles that challenge classical notions of local causality. Beyond its foundational significance, nonlocality is crucial for device-independent technologies like quantum key distribution and randomness generation. Nonlocality quickly deteriorates in the presence of noise, and restoring nonlocal correlations requires additional resources. These often come in the form of many instances of the input state and joint measurements, incurring a significant resource overhead. Here, we experimentally demonstrate that single copies of Bell-local states, incapable of violating any standard Bell inequality, can give rise to nonlocality after being embedded into a quantum network of multiple parties. We subject the initial entangled state to a quantum channel that broadcasts part of the state to two independent receivers and certify the nonlocality in the resulting network by violating a tailored Bell-like inequality. We obtain these results without making any assumptions about the prepared states, the quantum channel, or the validity of quantum theory. Our findings have fundamental implications for nonlocality and enable the practical use of nonlocal correlations in real-world applications, even in scenarios dominated by noise.

2.
Phys Rev Lett ; 131(6): 060803, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37625060

ABSTRACT

The quantum switch is an example of a process with an indefinite causal structure, and has attracted attention for its ability to outperform causally ordered computations within the quantum circuit model. To date, realizations of the quantum switch have made a trade-off between relying on optical interferometers susceptible to minute path length fluctuations and limitations on the range and fidelity of the implementable channels, thereby complicating their design, limiting their performance, and posing an obstacle to extending the quantum switch to multiple parties. In this Letter, we overcome these limitations by demonstrating an intrinsically stable quantum switch utilizing a common-path geometry facilitated by a novel reciprocal and universal SU(2) polarization gadget. We certify our design by successfully performing a channel discrimination task with near unity success probability.

3.
Phys Rev Lett ; 130(12): 120801, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37027876

ABSTRACT

We consider general prepare-and-measure scenarios in which Alice can transmit qubit states to Bob, who can perform general measurements in the form of positive operator-valued measures (POVMs). We show that the statistics obtained in any such quantum protocol can be simulated by the purely classical means of shared randomness and two bits of communication. Furthermore, we prove that two bits of communication is the minimal cost of a perfect classical simulation. In addition, we apply our methods to Bell scenarios, which extends the well-known Toner and Bacon protocol. In particular, two bits of communication are enough to simulate all quantum correlations associated to arbitrary local POVMs applied to any entangled two-qubit state.

4.
Phys Rev Lett ; 127(20): 200504, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34860031

ABSTRACT

We present an instance of a task of minimum-error discrimination of two qubit-qubit quantum channels for which a sequential strategy outperforms any parallel strategy. We then establish two new classes of strategies for channel discrimination that involve indefinite causal order and show that there exists a strict hierarchy among the performance of all four strategies. Our proof technique employs a general method of computer-assisted proofs. We also provide a systematic method for finding pairs of channels that showcase this phenomenon, demonstrating that the hierarchy between strategies is not exclusive to our main example.

5.
Phys Rev Lett ; 126(15): 150504, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33929213

ABSTRACT

The repeat-until-success strategy is a standard method to obtain success with a probability that grows exponentially with the number of iterations. However, since quantum systems are disturbed after a quantum measurement, how to perform repeat-until-success strategies in certain quantum algorithms is not straightforward. In this Letter, we propose a new structure for probabilistic higher-order transformation named success-or-draw, which allows a repeat-until-success implementation. For that we provide a universal construction of success-or-draw structure that works for any probabilistic higher-order transformation on unitary operations. We then present a semidefinite programming approach to obtain optimal success-or-draw protocols and analyze in detail the problem of inverting a general unitary operation.

6.
Phys Rev Lett ; 123(21): 210502, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31809184

ABSTRACT

Given a quantum gate implementing a d-dimensional unitary operation U_{d}, without any specific description but d, and permitted to use k times, we present a universal probabilistic heralded quantum circuit that implements the exact inverse U_{d}^{-1}, whose failure probability decays exponentially in k. The protocol employs an adaptive strategy, proven necessary for the exponential performance. It requires that k≥d-1, proven necessary for the exact implementation of U_{d}^{-1} with quantum circuits. Moreover, even when quantum circuits with indefinite causal order are allowed, k≥d-1 uses are required. We then present a finite set of linear and positive semidefinite constraints characterizing universal unitary inversion protocols and formulate a convex optimization problem whose solution is the maximum success probability for given k and d. The optimal values are computed using semidefinite programing solvers for k≤3 when d=2 and k≤2 for d=3. With this numerical approach we show for the first time that indefinite causal order circuits provide an advantage over causally ordered ones in a task involving multiple uses of the same unitary operation.

7.
Phys Rev Lett ; 123(18): 180401, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31763882

ABSTRACT

In contrast with classical physics, in quantum physics some sets of measurements are incompatible in the sense that they cannot be performed simultaneously. Among other applications, incompatibility allows for contextuality and Bell nonlocality. This makes it of crucial importance to develop tools for certifying whether a set of measurements respects a certain structure of incompatibility. Here we show that, for quantum or nonsignaling models, if the measurements employed in a Bell test satisfy a given type of compatibility, then the amount of violation of some specific Bell inequalities becomes limited. Then, we show that correlations arising from local measurements on two-qubit states violate these limits, which rules out in a device-independent way such structures of incompatibility. In particular, we prove that quantum correlations allow for a device-independent demonstration of genuine triplewise incompatibility. Finally, we translate these results into a semidevice-independent Einstein-Podolsky-Rosen-steering scenario.

8.
Phys Rev Lett ; 117(19): 190402, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27858440

ABSTRACT

Constructing local hidden variable (LHV) models for entangled quantum states is a fundamental problem, with implications for the foundations of quantum theory and for quantum information processing. It is, however, a challenging problem, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to any entangled state and considering continuous sets of measurements. This leads to a sequence of tests which, in the limit, fully captures the set of quantum states admitting a LHV model. Similar methods are developed for local hidden state models. We illustrate the practical relevance of these methods with several examples.

9.
Phys Rev Lett ; 114(12): 120401, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25860723

ABSTRACT

The statistics of local measurements performed on certain entangled states can be reproduced using a local hidden variable (LHV) model. While all known models make use of an infinite amount of shared randomness, we show that essentially all entangled states admitting a LHV model can be simulated with finite shared randomness. Our most economical model simulates noisy two-qubit Werner states using only log_{2}(12)≃3.58 bits of shared randomness. We also discuss the case of positive operator valued measures, and the simulation of nonlocal states with finite shared randomness and finite communication. Our work represents a first step towards quantifying the cost of LHV models for entangled quantum states.

10.
Phys Rev Lett ; 113(16): 160402, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25361238

ABSTRACT

We investigate the relation between the incompatibility of quantum measurements and quantum nonlocality. We show that a set of measurements is not jointly measurable (i.e., incompatible) if and only if it can be used for demonstrating Einstein-Podolsky-Rosen steering, a form of quantum nonlocality. Moreover, we discuss the connection between Bell nonlocality and joint measurability, and give evidence that both notions are inequivalent. Specifically, we exhibit a set of incompatible quantum measurements and show that it does not violate a large class of Bell inequalities. This suggests the existence of incompatible quantum measurements which are Bell local, similarly to certain entangled states which admit a local hidden variable model.

11.
Phys Rev Lett ; 112(14): 140407, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24765929

ABSTRACT

We consider the problem of testing the dimension of uncharacterized classical and quantum systems in a prepare-and-measure setup. Here we assume the preparation and measurement devices to be independent, thereby making the problem nonconvex. We present a simple method for generating nonlinear dimension witnesses for systems of arbitrary dimension. The simplest of our witnesses is highly robust to technical imperfections, and can certify the use of qubits in the presence of arbitrary noise and arbitrarily low detection efficiency. Finally, we show that this witness can be used to certify the presence of randomness, suggesting applications in quantum information processing.

12.
Phys Rev Lett ; 111(16): 160402, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24182236

ABSTRACT

The nonlocality of certain quantum states can be revealed by using local filters before performing a standard Bell test. This phenomenon, known as hidden nonlocality, has been so far demonstrated only for a restricted class of measurements, namely, projective measurements. Here, we prove the existence of genuine hidden nonlocality. Specifically, we present a class of two-qubit entangled states, for which we construct a local model for the most general local measurements, and show that the states violate a Bell inequality after local filtering. Hence, there exist entangled states, the nonlocality of which can be revealed only by using a sequence of measurements. Finally, we show that genuine hidden nonlocality can be maximal. There exist entangled states for which a sequence of measurements can lead to maximal violation of a Bell inequality, while the statistics of nonsequential measurements is always local.

SELECTION OF CITATIONS
SEARCH DETAIL
...