Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798440

ABSTRACT

Understanding the distribution of hundreds of thousands of plant metabolites across the plant kingdom presents a challenge. To address this, we curated publicly available LC-MS/MS data from 19,075 plant extracts and developed the plantMASST reference database encompassing 246 botanical families, 1,469 genera, and 2,793 species. This taxonomically focused database facilitates the exploration of plant-derived molecules using tandem mass spectrometry (MS/MS) spectra. This tool will aid in drug discovery, biosynthesis, (chemo)taxonomy, and the evolutionary ecology of herbivore interactions.

2.
Sci Data ; 11(1): 415, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649352

ABSTRACT

Natural products exhibit interesting structural features and significant biological activities. The discovery of new bioactive molecules is a complex process that requires high-quality metabolite profiling data to properly target the isolation of compounds of interest and enable their complete structural characterization. The same metabolite profiling data can also be used to better understand chemotaxonomic links between species. This Data Descriptor details a dataset resulting from the untargeted liquid chromatography-mass spectrometry metabolite profiling of 76 natural extracts of the Celastraceae family. The spectral annotation results and related chemical and taxonomic metadata are shared, along with proposed examples of data reuse. This data can be further studied by researchers exploring the chemical diversity of natural products. This can serve as a reference sample set for deep metabolome investigation of this chemically rich plant family.


Subject(s)
Celastraceae , Metabolomics , Biological Products/chemistry , Celastraceae/chemistry , Metabolome , Plant Extracts/chemistry , Liquid Chromatography-Mass Spectrometry
3.
ACS Cent Sci ; 10(3): 494-510, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38559298

ABSTRACT

The ENPKG framework organizes large heterogeneous metabolomics data sets as a knowledge graph, offering exciting opportunities for drug discovery and chemodiversity characterization.

4.
Front Chem ; 12: 1371982, 2024.
Article in English | MEDLINE | ID: mdl-38638877

ABSTRACT

In natural products (NPs) research, methods for the efficient prioritization of natural extracts (NEs) are key for discovering novel bioactive NPs. In this study a biodiverse collection of 1,600 NEs, previously analyzed by UHPLC-HRMS2 metabolite profiling was screened for Wnt pathway regulation. The results of the biological screening drove the selection of a subset of 30 non-toxic NEs with an inhibitory IC50 ≤ 5 µg/mL. To increase the chance of finding structurally novel bioactive NPs, Inventa, a computational tool for automated scoring of NEs based on structural novelty was used to mine the HRMS2 analysis and dereplication results. After this, four out of the 30 bioactive NEs were shortlisted by this approach. The most promising sample was the ethyl acetate extract of the leaves of Hymenocardia punctata (Phyllanthaceae). Further phytochemical investigations of this species resulted in the isolation of three known prenylated flavones (3, 5, 7) and ten novel bicyclo[3.3.1]non-3-ene-2,9-diones (1, 2, 4, 6, 8-13), named Hymenotamayonins. Assessment of the Wnt inhibitory activity of these compounds revealed that two prenylated flavones and three novel bicyclic compounds showed interesting activity without apparent cytotoxicity. This study highlights the potential of combining Inventa's structural novelty scores with biological screening results to effectively discover novel bioactive NPs in large NE collections.

5.
Nat Microbiol ; 9(2): 336-345, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38316926

ABSTRACT

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.


Subject(s)
Metabolomics , Tandem Mass Spectrometry , Humans , Metabolomics/methods , Databases, Factual
6.
ACS Omega ; 8(34): 31373-31388, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37663497

ABSTRACT

Fungi exhibit a wide range of ecological guilds, but those that live within the inner tissues of plants (also known as endophytes) are particularly relevant due to the benefits they sometimes provide to their hosts, such as herbivory deterrence, disease protection, and growth promotion. Recently, endophytes have gained interest as potential biocontrol agents against crop pathogens, for example, coffee plants (Coffea arabica). Published results from research performed in our laboratory showed that endophytic fungi isolated from wild Rubiaceae plants were effective in reducing the effects of the American leaf spot of coffee (Mycena citricolor). One of these isolates (GU11N) from the plant Randia grandifolia was identified as Daldinia eschscholtzii (Xylariales). Its antagonism mechanisms, effects, and chemistry against M. citricolor were investigated by analyzing its volatile profile alone and in the presence of the pathogen in contactless and dual culture assays. The experimental design involved direct sampling of agar plugs in vials for headspace (HS) and headspace solid-phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS) analysis. Additionally, we used ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS) to identify nonvolatile compounds from organic extracts of the mycelia involved in the interaction. Results showed that more volatile compounds were identified using HS-SPME (39 components) than those by the HS technique (13 components), sharing only 12 compounds. Statistical tests suggest that D. eschscholtzii inhibited the growth of M. citricolor through the release of VOCs containing a combination of 1,8-dimethoxynapththalene and terpene compounds affecting M. citricolor pseudopilei. The damaging effects of 1,8-dimethoxynaphthalene were corroborated in an in vitro test against M. citricolor pseudopilei; scanning electron microscopy (SEM) photographs confirmed structural damage. After analyzing the UHPLC-HRMS/MS data, a predominance of fatty acid derivatives was found among the putatively identified compounds. However, a considerable proportion of features (37.3%) remained unannotated. In conclusion, our study suggests that D. eschscholtzii has potential as a biocontrol agent against M. citricolor and that 1,8-dimethoxynaphthalene contributes to the observed damage to the pathogen's reproductive structures.

7.
Res Sq ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37577622

ABSTRACT

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

8.
Front Pharmacol ; 14: 1190241, 2023.
Article in English | MEDLINE | ID: mdl-37426806

ABSTRACT

In the course of the screening of plants from Niger for antiprotozoal activity, the methanol extract of Cassia sieberiana, and the dichloromethane extracts of Ziziphus mauritiana and Sesamun alatum were found to be active against protozoan parasites, namely Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and/or Plasmodium falciparum. Myricitrin (1), quercitrin (2) and 1-palmitoyl-lysolecithin (3) were isolated from C. sieberiana. From Z. mauritiana, the three triterpene derivatives 13, 15, and 16 are described here for the first time. Their chemical structures were determined by 1D and 2D NMR experiments, UV, IR and HRESIMS data. The absolute configurations were assigned via comparison of the experimental and calculated ECD spectra. In addition, eight known cyclopeptide alkaloids (4, 5, 7-12), and five known triterpenoids (6, 14, 17-19) were isolated. The antiprotozoal activity of the isolated compounds, as well as of eleven quinone derivatives (20-30) previously isolated from S. alatum was determined in vitro. The cytotoxicity in L6 rat myoblast cells was also evaluated. Compound 18 showed the highest antiplasmodial activity (IC50 = 0.2 µm) and compound 24 inhibited T. b. rhodesiense with an IC50 value of 0.007 µM. However, it also displayed significant cytotoxicity in L6 cells (IC50 = 0.4 µm).

9.
Microb Ecol ; 86(3): 1972-1992, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36947169

ABSTRACT

Fungal pigments are characterized by a diverse set of chemical backbones, some of which present photosensitizer-like structures. From the genus Cortinarius, for example, several biologically active photosensitizers have been identified leading to the hypothesis that photoactivity might be a more general phenomenon in the kingdom Fungi. This paper aims at testing the hypothesis. Forty-eight fruiting body-forming species producing pigments from all four major biosynthetic pathways (i.e., shikimate-chorismate, acetate-malonate, mevalonate, and nitrogen heterocycles) were selected and submitted to a workflow combining in vitro chemical and biological experiments with state-of-the-art metabolomics. Fungal extracts were profiled by high-resolution mass spectrometry and subsequently explored by spectral organization through feature-based molecular networking (FBMN), including advanced metabolite dereplication techniques. Additionally, the photochemical properties (i.e., light-dependent production of singlet oxygen), the phenolic content, and the (photo)cytotoxic activity of the extracts were studied. Different levels of photoactivity were found in species from all four metabolic groups, indicating that light-dependent effects are common among fungal pigments. In particular, extracts containing pigments from the acetate-malonate pathway, e.g., extracts from Bulgaria inquinans, Daldinia concentrica, and Cortinarius spp., were not only efficient producers of singlet oxygen but also exhibited photocytotoxicity against three different cancer cell lines. This study explores the distribution of photobiological traits in fruiting body forming fungi and highlights new sources for phototherapeutics.


Subject(s)
Antineoplastic Agents , Singlet Oxygen , Singlet Oxygen/analysis , Plant Extracts , Fruiting Bodies, Fungal/chemistry
10.
J Nat Prod ; 85(12): 2706-2713, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36512676

ABSTRACT

The phytochemical investigation of the dichloromethane root extract of Sesamum alatum led to the isolation of 18 compounds. Among these, compounds 3-8, defined as 9-hydroxy-2,2-dimethyl-2H-benzo[g]chromene-5,10-dione 6-O-ß-d-glucopyranoside (3), (2S,3R)-3,4,7-trihydroxy-2-(3'-methylbut-2'-en-1'-yl)-2,3-dihydro-1H-inden-1-one (4), (Z)-2-(1',4'-dihydroxy-4'-methylpent-2'-en-1'-ylidene)-4,7-dihydroxy-1H-indene-1,3(2H)-dione (5), (S)-2,5,8-trihydroxy-3-(2'-hydroxy-3'-methylbut-3'-en-1'-yl)naphthalene-1,4-dione (6), 6-hydroxy-3-(3'-methylbut-2'-en-1'-yl)-4-oxo-4H-chromene-5-carboxylic acid (7), and (S)-2-(1'-hydroxy-4'-methylpent-3'-en-1'-yl)anthracene-9,10-dione (8), respectively, have not yet been described. Their structures were elucidated based on spectroscopic data analysis, including IR, NMR, HRESIMS and ECD measurements. Additional known compounds, namely, hydroxysesamone (1), anthrasesamone A (2), 2,6-dimethoxy-1,4-benzoquinone (9), syringic acid (10), syringaresinol (11), 2,3-epoxysesamone 8-O-ß-d-glucopyranoside (12), 2,3-diacetylmartinoside (13), 2,3-epoxy-4,5,8-trihydroxy-2-prenyl-1-tetralone (14), ursolic acid (15), chlorosesamone (16), 2,3-epoxysesamone (17), and 2-(4-methyl-3-pentenyl)anthraquinone (18) were isolated. The antiproliferative activity of the compounds was tested against the RPMI 8226 multiple myeloma cell line. When compounds presented an IC50 value <10 µM, they were tested against two other multiple myeloma cell lines, MM.1S and MM.1R. Compound 17 was found to be the most potent, with IC50 values of 0.6, 0.7, and 0.9 µM, respectively, for the three cell lines.


Subject(s)
Multiple Myeloma , Sesamum , Cell Line, Tumor , Multiple Myeloma/drug therapy , Benzopyrans , Molecular Structure
11.
Front Mol Biosci ; 9: 1028334, 2022.
Article in English | MEDLINE | ID: mdl-36438653

ABSTRACT

Collections of natural extracts hold potential for the discovery of novel natural products with original modes of action. The prioritization of extracts from collections remains challenging due to the lack of a workflow that combines multiple-source information to facilitate the data interpretation. Results from different analytical techniques and literature reports need to be organized, processed, and interpreted to enable optimal decision-making for extracts prioritization. Here, we introduce Inventa, a computational tool that highlights the structural novelty potential within extracts, considering untargeted mass spectrometry data, spectral annotation, and literature reports. Based on this information, Inventa calculates multiple scores that inform their structural potential. Thus, Inventa has the potential to accelerate new natural products discovery. Inventa was applied to a set of plants from the Celastraceae family as a proof of concept. The Pristimera indica (Willd.) A.C.Sm roots extract was highlighted as a promising source of potentially novel compounds. Its phytochemical investigation resulted in the isolation and de novo characterization of thirteen new dihydro-ß-agarofuran sesquiterpenes, five of them presenting a new 9-oxodihydro-ß-agarofuran base scaffold.

12.
Front Chem ; 10: 912396, 2022.
Article in English | MEDLINE | ID: mdl-35711965

ABSTRACT

A series of complex stilbene dimers have been generated through biotransformation of resveratrol, pterostilbene, and the mixture of both using the enzymatic secretome of Botrytis cinerea Pers. The process starts with achiral molecules and results in the generation of complex molecules with multiple chiral carbons. So far, we have been studying these compounds in the form of enantiomeric mixtures. In the present study, we isolated the enantiomers to determine their absolute configuration and assess if the stereochemistry could impact their biological properties. Eight compounds were selected for this study, corresponding to the main scaffolds generated (pallidol, leachianol, restrytisol and acyclic dimers) and the most active compounds (trans-δ-viniferin derivatives) against a methicillin-resistant strain of Staphylococcus aureus (MRSA). To isolate these enantiomers and determine their absolute configuration, a chiral HPLC-PDA analysis was performed. The analysis was achieved on a high-performance liquid chromatography system equipped with a chiral column. For each compound, the corresponding enantiomeric pair was obtained with high purity. The absolute configuration of each enantiomer was determined by comparison of experimental and calculated electronic circular dichroism (ECD). The antibacterial activities of the four trans-δ-viniferin derivatives against two S. aureus strains were evaluated.

13.
Molecules ; 27(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35408605

ABSTRACT

Species of the genus Pleiocarpa are used in traditional medicine against fever and malaria. The present study focuses on the isolation and identification of bioactive compounds from P. bicarpellata extracts, and the evaluation of their antiprotozoal activity. Fractionation and isolation combined to LC-HRMS/MS-based dereplication provided 16 compounds: seven indole alkaloids, four indoline alkaloids, two secoiridoid glycosides, two iridoid glycosides, and one phenolic glucoside. One of the quaternary indole alkaloids (7) and one indoline alkaloid (15) have never been reported before. Their structures were elucidated by analysis of spectroscopic data, including 1D and 2D NMR experiments, UV, IR, and HRESIMS data. The absolute configurations were determined by comparison of the experimental and calculated ECD data. The extracts and isolated compounds were evaluated for their antiprotozoal activity towards Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum, as well as for their cytotoxicity against rat skeletal myoblast L6 cells. The dichloromethane/methanol (1:1) root extract showed strong activity against P. falciparum (IC50 value of 3.5 µg/mL). Among the compounds isolated, tubotaiwine (13) displayed the most significant antiplasmodial activity with an IC50 value of 8.5 µM and a selectivity index of 23.4. Therefore, P. bicarpallata extract can be considered as a source of indole alkaloids with antiplasmodial activity.


Subject(s)
Antimalarials , Antiprotozoal Agents , Apocynaceae , Leishmania donovani , Malaria, Falciparum , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plasmodium falciparum , Rats , Trypanosoma brucei rhodesiense
14.
J Nat Prod ; 85(1): 56-62, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34969245

ABSTRACT

Ipomoea asarifolia is a herbaceous plant belonging to the family Convolvulaceae and is native to tropical regions of Africa, America, and Asia. A dichloromethane root extract showed antiproliferative activity against multiple myeloma cells (RPMI 8226). The phytochemical investigation led to the isolation of 15 compounds. Compounds 1-4, named (4S,8S)-1-(furan-3-yl)-9-hydroxy-4,8-dimethylnonane-1,6-dione, isoferulic acid hexadecyl ester, caffeic acid hexadecyl ester, and asarifolin I, respectively, are described for the first time. The structures of these molecules were established from their NMR, UV, IR spectroscopic, and MS data. 4-Hydroxycinnamic acid hexadecyl ester (5), 4-hydroxycinnamic acid octadecyl ester (6), 4-hydroxycinnamic acid eicosyl ester (7), caffeic acid octadecyl ester (8), pescapreins III, IV, XXI, XXIII, XXV, and XXVI (9-14), and stoloniferin III (15) were also isolated. All compounds were tested against a multiple myeloma cell line (RPMI 8226). When their IC50 value was lower than 10 µM, the compounds were also tested against two other multiple myeloma cell lines, MM.1S and MM.1R. Compound 3 was the most potent, with an IC50 value of 3.0 µM against RPMI 8226 cells.


Subject(s)
Cell Proliferation/drug effects , Ipomoea/chemistry , Multiple Myeloma/pathology , Plant Extracts/pharmacology , Plant Roots/chemistry , Cell Line, Tumor , Humans , Plant Extracts/chemistry , Spectrum Analysis/methods
15.
Chimia (Aarau) ; 76(11): 954-963, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-38069791

ABSTRACT

Metabolomics is playing an increasingly prominent role in chemical ecology and in the discovery of bioactive natural products (NPs). The identification of metabolites is a common/central objective in both research fields. NPs have significant biological properties and play roles in multiple chemical-ecological interactions. Classically, in pharmacognosy, their chemical structure is determined after a complex process of isolating and interpreting spectroscopic data. With the advent of powerful analytical techniques such as liquid chromatography-mass spectrometry (LC-MS) the annotation process of the specialised metabolome of plants and microorganisms has improved considerably. In this article, we summarise the possibilities opened by these advances and illustrate how we harnessed them in our own research to automate annotations of NPs and target the isolation of key compounds. In addition, we are also discussing the analytical and computational challenges associated with these emerging approaches and their perspective.

16.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-36649739

ABSTRACT

As privileged structures, natural products often display potent biological activities. However, the discovery of novel bioactive scaffolds is often hampered by the chemical complexity of the biological matrices they are found in. Large natural extract collections are thus extremely valuable for their chemical novelty potential but also complicated to exploit in the frame of drug-discovery projects. In the end, it is the pure chemical substances that are desired for structural determination purposes and bioactivity evaluation. Researchers interested in the exploration of large and chemodiverse extract collections should thus establish strategies aiming to efficiently tackle such chemical complexity and access these structures. Establishing carefully crafted digital layers documenting the spectral and chemical complexity as well as bioactivity results of natural extracts collections can help prioritize time-consuming but mandatory isolation efforts. In this note, we report the results of our initial exploration of a collection of 1,600 plant extracts in the frame of a drug-discovery effort. After describing the taxonomic coverage of this collection, we present the results of its liquid chromatography high-resolution mass spectrometric profiling and the exploitation of these profiles using computational solutions. The resulting annotated mass spectral dataset and associated chemical and taxonomic metadata are made available to the community, and data reuse cases are proposed. We are currently continuing our exploration of this plant extract collection for drug-discovery purposes (notably looking for novel antitrypanosomatids, anti-infective and prometabolic compounds) and ecometabolomics insights. We believe that such a dataset can be exploited and reused by researchers interested in computational natural products exploration.


Subject(s)
Drug Discovery , Plant Extracts , Plant Extracts/chemistry , Mass Spectrometry/methods , Drug Discovery/methods , Chromatography, Liquid/methods
17.
Metabolites ; 11(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34822449

ABSTRACT

Fungi have developed a wide array of defense strategies to overcome mechanical injuries and pathogen infections. Recently, photoactivity has been discovered by showing that pigments isolated from Cortinarius uliginosus produce singlet oxygen under irradiation. To test if this phenomenon is limited to dermocyboid Cortinarii, six colourful Cortinarius species belonging to different classical subgenera (i.e., Dermocybe, Leprocybe, Myxacium, Phlegmacium, and Telamonia) were investigated. Fungal extracts were explored by the combination of in vitro photobiological methods, UHPLC coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS2), feature-based molecular networking (FBMN), and metabolite dereplication techniques. The fungi C. rubrophyllus (Dermocybe) and C. xanthophyllus (Phlegmacium) exhibited promising photobiological activity in a low concentration range (1-7 µg/mL). Using UHPLC-HRMS2-based metabolomic tools, the underlying photoactive principle was investigated. Several monomeric and dimeric anthraquinones were annotated as compounds responsible for the photoactivity. Furthermore, the results showed that light-induced activity is not restricted to a single subgenus, but rather is a trait of Cortinarius species of different phylogenetic lineages and is linked to the presence of fungal anthraquinones. This study highlights the genus Cortinarius as a promising source for novel photopharmaceuticals. Additionally, we showed that putative dereplication of natural photosensitizers can be done by FBMN.

18.
Microorganisms ; 9(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34576706

ABSTRACT

The opportunistic pathogen Pseudomonas aeruginosa is one of the "critical priority pathogens" due to its multidrug resistance to a wide range of antibiotics. Its ability to invade and damage host tissues is due to the use of quorum sensing (QS) to collectively produce a plethora of virulence factors. Inhibition of QS is an attractive strategy for new antimicrobial agents because it disrupts the initial events of infection without killing the pathogen. Highly diverse microorganisms as endophytes represent an under-explored source of bioactive natural products, offering opportunities for the discovery of novel QS inhibitors (QSI). In the present work, the objective was to explore selective QSIs within a unique collection of fungal endophytes isolated from the tropical palm Astrocaryum sciophilum. The fungi were cultured, extracted, and screened for their antibacterial and specific anti-QS activities against P. aeruginosa. The endophytic strain Lasiodiplodia venezuelensis was prioritized for scaled-up fractionation for its selective activity, leading to the isolation of eight compounds in a single step. Among them, two pyran-derivatives were found to be responsible for the QSI activity, with an effect on some QS-regulated virulence factors. Additional non-targeted metabolomic studies on P. aeruginosa documented their effects on the production of various virulence-related metabolites.

19.
Chem Biol Interact ; 349: 109661, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34537181

ABSTRACT

Phytochemical analysis of EtOH extract from leaves of Nectandra oppositifolia afforded three flavonoids: kaempferol (1), kaempferol-3-O-α-rhamnopyranoside (2) and kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside (3), which were characterized by NMR and ESI-HRMS. When tested against the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, flavonoids 1 and 3 were effective to kill the trypomastigotes with IC50 values of 32.0 and 6.7 µM, respectively, while flavonoid 2 was inactive. Isolated flavonoids 1-3 were also tested in mammalian fibroblasts and showed CC50 values of 24.8, 48.7 and 153.1 µM, respectively. Chemically, these results suggested that the free aglycone plays an important role in the bioactivity while the presence of p-coumaroyl unities linked in the rhamnoside unity is important to enhance the antitrypanosomal activity and reduce the mammalian cytotoxicity. The mechanism of cellular death was investigated for the most potent flavonoid 3 in the trypomastigotes using fluorescent and luminescent-based assays. It indicated that this compound induced neither permeabilization of the plasma membrane nor depolarization of the membrane electric potential. However, early time incubation (20 min) with flavonoid 3 resulted in a constant elevation of the Ca2+ levels inside the parasite. This effect was followed by a mitochondrial imbalance, leading to a hyperpolarization and depolarization of the mitochondrial membrane potential, with reduction of the ATP levels. During this time, the levels of reactive oxygen species levels (ROS) were unaltered. The leakage of Ca2+ from the intracellular pools can affect the bioenergetics system of T. cruzi, leading to the parasite death. Therefore, flavonoid 3 can be a useful tool for future studies against T. cruzi parasites.


Subject(s)
Calcium/metabolism , Flavonoids/chemistry , Kaempferols/chemistry , Lauraceae/chemistry , Trypanosoma cruzi/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Female , Flavonoids/isolation & purification , Flavonoids/pharmacology , Ions/chemistry , Lauraceae/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C , Mitochondria/drug effects , Mitochondria/metabolism , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism , Trypanosoma cruzi/drug effects
20.
Front Chem ; 9: 664489, 2021.
Article in English | MEDLINE | ID: mdl-34458231

ABSTRACT

The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancers are dependent on Wnt pathway overactivation mostly through dysregulation of pathway component protein expression, which necessitates the search for therapeutically relevant compounds targeting them. Highly diverse microorganisms as endophytes represent an underexplored field in the therapeutic natural products research. In the present work, the objective was to explore the chemical diversity and presence of selective Wnt inhibitors within a unique collection of fungi isolated as foliar endophytes from the long-lived tropical palm Astrocaryum sciophilum. The fungi were cultured, extracted with ethyl acetate, and screened for their effects on the Wnt pathway and cell proliferation. The endophytic strain Lasiodiplodia venezuelensis was prioritized for scaled-up fractionation based on its selective activity. Application of geometric transfer from analytical HPLC conditions to semi-preparative scale and use of dry load sample introduction enabled the isolation of 15 pure compounds in a single step. Among the molecules identified, five are original natural products described for the first time, and six are new to this species. An active fraction obtained by semi-preparative HPLC was re-purified by UHPLC-PDA using a 1.7 µm phenyl column. 75 injections of 8 µg were necessary to obtain sufficient amounts of each compound for structure elucidation and bioassays. Using this original approach, in addition to the two major compounds, a third minor compound identified as (R)-(-)-5-hydroxymellein (18) was obtained, which was found to be responsible for the significant Wnt inhibition activity recorded. Further studies of this compound and its structural analogs showed that only 18 acts in a highly specific manner, with no acute cytotoxicity. This compound is notably selective for upstream components of the Wnt pathway and is able to inhibit the proliferation of three triple negative breast cancer cell lines. In addition to the discovery of Wnt inhibitors of interest, this study contributes to better characterize the biosynthetic potential of L. venezuelensis.

SELECTION OF CITATIONS
SEARCH DETAIL
...