Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(14): 22685-22697, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475373

ABSTRACT

A reliable, but cost-effective generation of single-photon states is key for practical quantum communication systems. For real-world deployment, waveguide sources offer optimum compatibility with fiber networks and can be embedded in hybrid integrated modules. Here, we present what we believe to be the first chip-size fully integrated fiber-coupled heralded single photon source (HSPS) module based on a hybrid integration of a nonlinear lithium niobate waveguide into a polymer board. Photon pairs at 810 nm (signal) and 1550 nm (idler) are generated via parametric down-conversion pumped at 532 nm in the LiNbO3 waveguide. The pairs are split in the polymer board and routed to separate output ports. The module has a size of (2 × 1) cm2 and is fully fiber-coupled with one pump input fiber and two output fibers. We measure a heralded second-order correlation function of g h(2)=0.05 with a heralding efficiency of η h=3.5% at low pump powers.

2.
Phys Rev Lett ; 129(15): 150501, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36269962

ABSTRACT

Multiphoton entangled quantum states are key to advancing quantum technologies such as multiparty quantum communications, quantum sensing, or quantum computation. Their scalable generation, however, remains an experimental challenge. Current methods for generating these states rely on stitching together photons from probabilistic sources, and state generation rates drop exponentially in the number of photons. Here, we implement a system based on active feed-forward and multiplexing that addresses this challenge. We demonstrate the scalable generation of four-photon and six-photon Greenberger-Horne-Zeilinger states, increasing generation rates by factors of 9 and 35, respectively. This is consistent with the exponential enhancement compared to the standard nonmultiplexed approach that is predicted by our theory. These results facilitate the realization of practical multiphoton protocols for photonic quantum technologies.

3.
Opt Express ; 30(11): 19288-19299, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221710

ABSTRACT

Highly directive antennas with the ability of shaping radiation patterns in desired directions are essential for efficient on-chip optical communication with reduced cross talk. In this paper, we design and optimize three distinct broadband traveling-wave tantalum pentoxide antennas exhibiting highly directional characteristics. Our antennas contain a director and reflector deposited on a glass substrate, which are excited by a dipole emitter placed in the feed gap between the two elements. Full-wave simulations in conjunction with global optimization provide structures with an enhanced linear directivity as high as 119 radiating in the substrate. The high directivity is a result of the interplay between two dominant TE modes and the leaky modes present in the antenna director. Furthermore, these low-loss dielectric antennas exhibit a near-unity radiation efficiency at the operational wavelength of 780 nm and maintain a broad bandwidth. Our numerical results are in good agreement with experimental measurements from the optimized antennas fabricated using a two-step electron-beam lithography, revealing the highly directive nature of our structures. We envision that our antenna designs can be conveniently adapted to other dielectric materials and prove instrumental for inter-chip optical communications and other on-chip applications.

4.
Opt Express ; 26(25): 32475-32490, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30645414

ABSTRACT

Entangled photon pair sources based on bulk optics are approaching optimal design and implementation, with high state fidelities, spectral purities and heralding efficiencies, but generally low brightness. Integrated entanglement sources, while providing higher brightness and low-power operation, often sacrifice performance in output state quality and coupling efficiency. Here we present a polarization-entangled pair source based on a hybrid approach of waveguiding and bulk optics, addressing every metric simultaneously. We show 96 % fidelity to the singlet state, 82 % Hong-Ou-Mandel interference visibility, 43 % average Klyshko efficiency, and a high brightness of 2.9 × 106 pairs/(mode·s·mW), while requiring only microwatts of pump power.

5.
Nat Commun ; 8: 14288, 2017 01 30.
Article in English | MEDLINE | ID: mdl-28134242

ABSTRACT

Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

6.
Opt Express ; 24(3): 2836-49, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26906852

ABSTRACT

Efficient sources of many-partite non-classical states are key for the advancement of quantum technologies and for the fundamental testing of quantum mechanics. We demonstrate the generation of time-correlated photon triplets at telecom wavelengths via pulsed cascaded parametric down-conversion in a monolithically integrated source. By detecting the generated states with success probabilities of (6.25 ± 1.09) × 10(-11) per pump pulse at injected powers as low as 10 µW, we benchmark the efficiency of the complete system and deduce its high potential for scalability. Our source is unprecedentedly long-term stable, it overcomes interface losses intrinsically due to its monolithic architecture, and the photon-triplet states dominate uncorrelated noise significantly. These results mark crucial progress towards the proliferation of robust, scalable, synchronized and miniaturized quantum technology.

7.
Opt Express ; 18(13): 14225-31, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20588556

ABSTRACT

The efficiency of wavelength conversion by cascaded second harmonic generation / difference frequency generation (cSHG/DFG) in Ti:PPLN waveguides can be considerably improved by using a double-pass configuration. However, due to the wavelength dependent phase change by the dielectric folding mirror phase compensation is required to maintain an optimum power transfer. We experimentally investigated three different approaches and improved the wavelength conversion efficiency up to 9 dB in comparison with the single-pass configuration.


Subject(s)
Niobium , Optics and Photonics/instrumentation , Optics and Photonics/methods , Oxides , Equipment Design , Light , Models, Theoretical , Nonlinear Dynamics
8.
Opt Lett ; 29(2): 165-7, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-14743998

ABSTRACT

A thermally fixed photorefractive Bragg grating is written in a single-mode Ti:Fe:Er:LiNbO3 channel waveguide and used to develop a distributed feedback-distributed Bragg reflector coupled cavity laser with a second broadband dielectric cavity mirror. The optically pumped (lambda(p) = 1480 nm, P = 130 mW) laser emits in single-frequency operation as much as 8 mW at lambda = 1557.2 nm with a slope efficiency of approximately 22%. The laser wavelength can be thermo-optically and electro-optically tuned over 100 pm.

SELECTION OF CITATIONS
SEARCH DETAIL
...