Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543675

ABSTRACT

Copper nanoparticles (Cu NPs) show promise in dentistry for combating bacterial dysbiosis and tooth decay. Understanding their effects on commensal versus pathogenic bacteria is vital for maintaining oral health balance. While Cu NPs demonstrate antibacterial properties against various oral bacteria, including common pathogens associated with tooth decay, their impact on commensal bacteria requires careful examination. In our work, we analyzed three types of Cu NPs for their effects on the growth, viability, and biofilm formation of representative caries-associated and commensal oral bacteria. S. sanguinis showed high tolerance to all Cu NPs, while L. rhamnosus was highly sensitive. Oxide-Cu NPs exhibited a stronger inhibitory effect on pathobionts compared with commensal bacteria. Moreover, the biofilm formation of the key cariogenic bacteria S. mutans was reduced, with minimal negative effects on commensal species' biofilm formation. All our results showed that CuO nanoparticles (CuO NPs) exhibit reduced toxicity toward commensal bacteria growth and development but have a strong impact on pathogens. This suggests their potential for targeted treatments against pathogenic bacteria, which could help in maintaining the balance of the oral bacterial community.

2.
J Endocr Soc ; 3(3): 655-664, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30842989

ABSTRACT

Prostate cancer (PCa) preferentially metastasizes to bone, leading to complications including severe pain, fractures, spinal cord compression, bone marrow suppression, and a mortality of ∼70%. In spite of recent advances in chemo-, hormonal, and radiation therapies, bone-metastatic, castrate-resistant PCa is incurable. PCa is somewhat unique among the solid tumors in its tendency to produce osteoblastic lesions composed of hypermineralized bone with multiple layers of poorly organized type I collagen fibrils that have reduced mechanical strength. Many of the signaling pathways that control normal bone homeostasis are at play in pathologic PCa bone metastases, including the receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand/osteoprotegerin system. A number of PCa-derived soluble factors have been shown to induce the dysfunctional osteoblastic phenotype. However, therapies directed at these osteoblastic-stimulating proteins have yielded disappointing clinical results to date. One of the soluble factors expressed by PCa cells, particularly in bone metastases, is prostatic acid phosphatase (PAP). Human PAP is a prostate epithelium-specific secretory protein that was the first tumor marker ever described. Biologically, PAP exhibits both phosphatase activity and ecto-5'-nucleotidase activity, generating extracellular phosphate and adenosine as the final products. Accumulating evidence indicates that PAP plays a causal role in the osteoblastic phenotype and aberrant bone mineralization seen in bone-metastatic, castrate-resistant PCa. Targeting PAP may represent a therapeutic approach to improve morbidity and mortality from PCa osteoblastic bone metastases.

3.
Am J Physiol Renal Physiol ; 311(4): F822-F829, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27465993

ABSTRACT

The mechanisms by which prostanoids contribute to the maintenance of whole body water homeostasis are complex and not fully understood. The present study demonstrates that an EP3-dependent feedback mechanism contributes to the regulation of water homeostasis under high-salt conditions. Rats on a normal diet and tap water were placed in metabolic cages and given either sulprostone (20 µg·kg-1·day-1) or vehicle for 3 days to activate EP3 receptors in the thick ascending limb (TAL). Treatment was continued for another 3 days in rats given either 1% NaCl in the drinking water or tap water. Sulprostone decreased expression of cyclooxygenase 2 (COX-2) expression by ∼75% in TAL tubules from rats given 1% NaCl concomitant with a ∼60% inhibition of COX-2-dependent PGE2 levels in the kidney. Urine volume increased after ingestion of 1% NaCl but was reduced ∼40% by sulprostone. In contrast, the highly selective EP3 receptor antagonist L-798106 (100 µg·kg-1·day-1), which increased COX-2 expression and renal PGE2 production, increased urine volume in rats given 1% NaCl. Sulprostone increased expression of aquaporin-2 (AQP2) in the inner medullary collecting duct plasma membrane in association with an increase in phosphorylation at Ser269 and decrease in Ser261 phosphorylation; antagonism of EP3 with L-798106 reduced AQP2 expression. Thus, although acute activation of EP3 by PGE2 in the TAL and collecting duct inhibits the Na-K-2Cl cotransporter and AQP2 activity, respectively, chronic activation of EP3 in vivo limits the extent of COX-2-derived PGE2 synthesis, thereby mitigating the inhibitory effects of PGE2 on these transporters and decreasing urine volume.


Subject(s)
Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Feedback, Physiological/physiology , Kidney/metabolism , Receptors, Prostaglandin E, EP3 Subtype/metabolism , Sodium, Dietary/administration & dosage , Water/metabolism , Animals , Aquaporin 2/genetics , Aquaporin 2/metabolism , Cyclooxygenase 2/genetics , Feedback, Physiological/drug effects , Homeostasis/drug effects , Homeostasis/physiology , Male , Rats , Receptors, Prostaglandin E, EP3 Subtype/genetics , Water-Electrolyte Balance/drug effects
4.
Am J Physiol Renal Physiol ; 307(6): F736-46, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25080527

ABSTRACT

We tested the hypothesis that inhibition of EP3 receptors enhances cyclooxygenase (COX)-2 expression in the thick ascending limb (TAL) induced by hypertonic stimuli. COX-2 protein expression in the outer medulla increased approximately twofold in mice given free access to 1% NaCl in the drinking water for 3 days. The increase was associated with an approximate threefold elevation in COX-2 mRNA accumulation and an increase in PGE2 production by isolated medullary (m)TAL tubules from 77.3 ± 8.4 to 165.7 ± 10.8 pg/mg protein. Moreover, administration of NS-398 abolished the increase in PGE2 production induced by 1% NaCl. EP3 receptor mRNA levels also increased approximately twofold in the outer medulla of mice that ingested 1% NaCl. The selective EP3 receptor antagonist L-798106 increased COX-2 mRNA by twofold in mTAL tubules, and the elevation in COX-2 protein induced by 1% NaCl increased an additional 50% in mice given L-798106. COX-2 mRNA in primary mTAL cells increased twofold in response to media made hypertonic by the addition of NaCl (400 mosmol/kg H2O). L-798106 increased COX-2 mRNA twofold in isotonic media and fourfold in cells exposed to 400 mosmol/kg H2O. PGE2 production by mTAL cells increased from 79.3 ± 4.6 to 286.7 ± 6.3 pg/mg protein after challenge with 400 mosmol/kg H2O and was inhibited in cells transiently transfected with a lentivirus short hairpin RNA construct targeting exon 5 of COX-2 to silence COX-2. Collectively, the data suggest that local hypertonicity in the mTAL is associated with an increase in COX-2 expression concomitant with elevated EP3 receptor expression, which limits COX-2 activity in this segment of the nephron.


Subject(s)
Cyclooxygenase 2/metabolism , Loop of Henle/enzymology , Receptors, Prostaglandin E, EP3 Subtype/metabolism , Sulfonamides/metabolism , Animals , Gene Knockdown Techniques , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Prostaglandin E, EP3 Subtype/antagonists & inhibitors , Signal Transduction , Sodium Chloride
5.
Am J Physiol Renal Physiol ; 303(3): F449-57, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22622465

ABSTRACT

Cyclooxygenase-2 (COX-2) is constitutively expressed and highly regulated in the thick ascending limb (TAL). As COX-2 inhibitors (Coxibs) increase COX-2 expression, we tested the hypothesis that a negative feedback mechanism involving PGE(2) EP3 receptors regulates COX-2 expression in the TAL. Sprague-Dawley rats were treated with a Coxib [celecoxib (20 mg·kg(-1)·day(-1)) or rofecoxib (10 mg·kg(-1)·day(-1))], with or without sulprostone (20 µg·kg(-1)·day(-1)). Sulprostone was given using two protocols, namely, previous to Coxib treatment (prevention effect; Sulp7-Coxib5 group) and 5 days after initiation of Coxib treatment (regression effect; Coxib10-Sulp5 group). Immunohistochemical and morphometric analysis revealed that the stained area for COX-2-positive TAL cells (µm(2)/field) increased in Coxib-treated rats (Sham: 412 ± 56.3, Coxib: 794 ± 153.3). The Coxib effect was inhibited when sulprostone was used in either the prevention (285 ± 56.9) or regression (345 ± 51.1) protocols. Western blot analysis revealed a 2.1 ± 0.3-fold increase in COX-2 protein expression in the Coxib-treated group, an effect abolished by sulprostone using either the prevention (1.2 ± 0.3-fold) or regression (0.6 ± 0.4-fold vs. control, P < 0.05) protocols. Similarly, the 6.4 ± 0.6-fold increase in COX-2 mRNA abundance induced by Coxibs (P < 0.05) was inhibited by sulprostone; prevention: 0.9 ± 0.3-fold (P < 0.05) and regression: 0.6 ± 0.1 (P < 0.05). Administration of a selective EP3 receptor antagonist, L-798106, also increased the area for COX-2-stained cells, COX-2 mRNA accumulation, and protein expression in the TAL. Collectively, the data suggest that COX-2 levels are regulated by a novel negative feedback loop mediated by PGE(2) acting on its EP3 receptor in the TAL.


Subject(s)
Cyclooxygenase 2/biosynthesis , Kidney/enzymology , Receptors, Prostaglandin E, EP3 Subtype/physiology , Animals , Blotting, Western , Cyclooxygenase 2 Inhibitors/pharmacology , Dinoprostone/analogs & derivatives , Dinoprostone/pharmacology , Dinoprostone/physiology , Feedback, Physiological/physiology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/physiology , Immunohistochemistry , Kidney/drug effects , Kidney/metabolism , Kidney Cortex/drug effects , Kidney Cortex/metabolism , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Male , Nephrons/metabolism , RNA/biosynthesis , RNA/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Receptors, Prostaglandin E, EP1 Subtype/metabolism , Receptors, Prostaglandin E, EP3 Subtype/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...