Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34617413

ABSTRACT

Stroke is one of the leading worldwide causes of death and sustained disability. Rapid and accurate assessment of cerebral perfusion is essential to diagnose and successfully treat stroke patients. Magnetic particle imaging (MPI) is a new technology with the potential to overcome some limitations of established imaging modalities. It is an innovative and radiation-free imaging technique with high sensitivity, specificity, and superior temporal resolution. MPI enables imaging and diagnosis of stroke and other neurological pathologies such as hemorrhage, tumors, and inflammatory processes. MPI scanners also offer the potential for targeted therapies of these diseases. Due to lower field requirements, MPI scanners can be designed as resistive magnets and employed as mobile devices for bedside imaging. With these advantages, MPI could accelerate and improve the diagnosis and treatment of neurological disorders. This review provides a basic introduction to MPI, discusses its current use for stroke imaging, and addresses future applications, including the potential for clinical implementation. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.


Subject(s)
Diagnostic Imaging , Magnetite Nanoparticles , Cerebrovascular Circulation , Humans , Ischemia , Magnetic Phenomena
2.
Brain Behav Immun ; 93: 277-287, 2021 03.
Article in English | MEDLINE | ID: mdl-33388423

ABSTRACT

RATIONALE: Adhesion molecules are key elements in stroke-induced brain injury by regulating the migration of effector immune cells from the circulation to the lesion site. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is an adhesion molecule highly expressed on endothelial cells and leukocytes, which controls the final steps of trans-endothelial migration. A functional role for PECAM-1 in post-ischemic brain injury has not yet been demonstrated. OBJECTIVE: Using genetic Pecam-1 depletion and PECAM-1 blockade using a neutralizing anti-PECAM-1 antibody, we evaluated the role of PECAM-1 mediated trans-endothelial immune cell migration for ischemic injury, delayed brain atrophy, and brain immune cell infiltrates. Trans-endothelial immune cell migration was furthermore evaluated in cultured human cerebral microvascular endothelial cells. METHODS AND RESULTS: Transient middle cerebral artery occlusion (tMCAO) was induced in 10-12-week-old male Pecam-1-/- and Pecam-1+/+ wildtype mice. PECAM-1 levels increased in the ischemic brain tissue due to the infiltration of PECAM-1+ leukocytes. Using magnetic resonance imaging, we observed smaller infarct volume, less edema formation, and less brain atrophy in Pecam-1-/- compared with Pecam-1+/+ wildtype mice. The transmigration of leukocytes, specifical neutrophils, was selectively reduced by Pecam-1-/-, as shown by immune fluorescence and flow cytometry in vivo and transmigration assays in vitro. Importantly, inhibition with an anti-PECAM-1 antibody in wildtype mice decreased neutrophil brain influx and infarct. CONCLUSION: PECAM-1 controls the trans-endothelial migration of neutrophils in a mouse model of ischemic stroke. Antibody blockade of PECAM-1 after stroke onset ameliorates stroke severity in mice, making PECAM-1 an interesting target to dampen post-stroke neuroinflammation, reduce ischemic brain injury, and enhance post-ischemic brain remodeling.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Cell Movement , Endothelial Cells , Endothelium, Vascular , Male , Mice , Mice, Knockout , Neutrophils , Platelet Endothelial Cell Adhesion Molecule-1 , Transendothelial and Transepithelial Migration
3.
Front Pharmacol ; 10: 1015, 2019.
Article in English | MEDLINE | ID: mdl-31572188

ABSTRACT

Hypertension is now considered as an inflammatory disease, and the kidney is a key end-organ target. Experimental and clinical studies suggest that interleukin 17A (IL-17A) is a promising therapeutic target in immune and chronic inflammatory diseases, including hypertension and kidney disease. Elevated circulating IL-17A levels have been observed in hypertensive patients. Our aim was to investigate whether chronically elevated circulating IL-17A levels could contribute to kidney damage, using a murine model of systemic IL-17A administration. Blood pressure increased after 14 days of IL-17A infusion in mice when compared with that in control mice, and this was associated to kidney infiltration by inflammatory cells, including CD3+ and CD4+ lymphocytes and neutrophils. Moreover, proinflammatory factors and inflammatory-related intracellular mechanisms were upregulated in kidneys from IL-17A-infused mice. In line with these findings, in the model of angiotensin II infusion in mice, IL-17A blockade, using an anti-IL17A neutralizing antibody, reduced kidney inflammatory cell infiltrates and chemokine overexpression. In kidney biopsies from patients with hypertensive nephrosclerosis, IL-17A positive cells, mainly Th17 and γδ T lymphocytes, were found. Overall, the results support a pathogenic role of IL-17A in hypertensive kidney disease-associated inflammation. Therapeutic approaches targeting this cytokine should be explored to prevent hypertension-induced kidney injury.

SELECTION OF CITATIONS
SEARCH DETAIL