Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 42(8): 613-624, 2023 02.
Article in English | MEDLINE | ID: mdl-36564470

ABSTRACT

The essential roles of proliferating cell nuclear antigen (PCNA) as a scaffold protein in DNA replication and repair are well established, while its cytosolic roles are less explored. Two metabolic enzymes, alpha-enolase (ENO1) and 6-phosphogluconate dehydrogenase (6PGD), both contain PCNA interacting motifs. Mutation of the PCNA interacting motif APIM in ENO1 (F423A) impaired its binding to PCNA and resulted in reduced cellular levels of ENO1 protein, reduced growth rate, reduced glucose consumption, and reduced activation of AKT. Metabolome and signalome analysis reveal large consequences of impairing the direct interaction between PCNA and ENO1. Metabolites above ENO1 in glycolysis accumulated while lower glycolytic and TCA cycle metabolite pools decreased in the APIM-mutated cells; however, their overall energetic status were similar to parental cells. Treating haematological cancer cells or activated primary monocytes with a PCNA targeting peptide drug containing APIM (ATX-101) also lead to a metabolic shift characterized by reduced glycolytic rate. In addition, we show that ATX-101 treatments reduced the ENO1 - PCNA interaction, the ENO1, GAPDH and 6PGD protein levels, as well as the 6PGD activity. Here we report for the first time that PCNA acts as a scaffold for metabolic enzymes, and thereby act as a direct regulator of primary metabolism.


Subject(s)
Proliferating Cell Nuclear Antigen , Humans , Deoxycholic Acid , DNA Replication , Mutation , Peptides/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism
2.
Nucleic Acids Res ; 48(10): 5540-5554, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32347931

ABSTRACT

In the fight against antimicrobial resistance, the bacterial DNA sliding clamp, ß-clamp, is a promising drug target for inhibition of DNA replication and translesion synthesis. The ß-clamp and its eukaryotic homolog, PCNA, share a C-terminal hydrophobic pocket where all the DNA polymerases bind. Here we report that cell penetrating peptides containing the PCNA-interacting motif APIM (APIM-peptides) inhibit bacterial growth at low concentrations in vitro, and in vivo in a bacterial skin infection model in mice. Surface plasmon resonance analysis and computer modeling suggest that APIM bind to the hydrophobic pocket on the ß-clamp, and accordingly, we find that APIM-peptides inhibit bacterial DNA replication. Interestingly, at sub-lethal concentrations, APIM-peptides have anti-mutagenic activities, and this activity is increased after SOS induction. Our results show that although the sequence homology between the ß-clamp and PCNA are modest, the presence of similar polymerase binding pockets in the DNA clamps allows for binding of the eukaryotic binding motif APIM to the bacterial ß-clamp. Importantly, because APIM-peptides display both anti-mutagenic and growth inhibitory properties, they may have clinical potential both in combination with other antibiotics and as single agents.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , DNA Polymerase III/antagonists & inhibitors , Peptides/chemistry , Peptides/pharmacology , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/therapeutic use , DNA Polymerase III/chemistry , DNA Replication/drug effects , DNA-Directed DNA Polymerase , Female , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/growth & development , Mice, Inbred BALB C , Mutagenesis/drug effects , Nucleic Acid Synthesis Inhibitors/chemistry , Nucleic Acid Synthesis Inhibitors/pharmacology , Nucleic Acid Synthesis Inhibitors/therapeutic use , Peptides/metabolism , Peptides/therapeutic use , Proliferating Cell Nuclear Antigen/metabolism , Protein Interaction Domains and Motifs , Staphylococcal Skin Infections/drug therapy , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...