Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Publication year range
1.
J Theor Biol ; 486: 110091, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31790679

ABSTRACT

Gene regulatory networks are a popular tool for modelling important biological phenomena, such as cell differentiation or oncogenesis. Efficient identification of the causal connections between genes, their products and regulating transcription factors, is key to understanding how defects in their function may trigger diseases. Modelling approaches should keep up with the ever more detailed descriptions of the biological phenomena at play, as provided by new experimental findings and technical improvements. In recent years, we have seen great improvements in mapping of specific binding sites of many transcription factors to distinct regulatory regions. Recent gene regulatory network models use binding measurements; but usually only to define gene-to-gene interactions, ignoring regulatory module structure. Moreover, current huge amount of transcriptomic data, and exploration of all possible cis-regulatory arrangements which can lead to the same transcriptomic response, makes manual model building both tedious and time-consuming. In our paper, we propose a method to specify possible regulatory connections in a given Boolean network, based on transcription factor binding evidence. This is implemented by an algorithm which expands a regular Boolean network model into a "cis-regulatory" Boolean network model. This expanded model explicitly defines regulatory regions as additional nodes in the network, and adds new, valuable biological insights to the system dynamics. The expanded model can automatically be compared with expression data. And, for each node, a regulatory function, consistent with the experimental data, can be found. The resulting models are usually more constrained (by biologically-motivated metadata), and can then be inspected in in silico simulations. The fully automated method for model identification has been implemented in Python, and the expansion algorithm in R. The method resorts to the Z3 Satisfiability Modulo Theories (SMT) solver, and is similar to the RE:IN application (Yordanov et al., 2016). It is available on https://github.com/regulomics/expansion-network.


Subject(s)
Computational Biology , Gene Regulatory Networks , Algorithms , Binding Sites , Computer Simulation
2.
Comput Struct Biotechnol J ; 18: 241-252, 2020.
Article in English | MEDLINE | ID: mdl-33489002

ABSTRACT

Due to the huge amount of biological and medical data available today, along with well-established machine learning algorithms, the design of largely automated drug development pipelines can now be envisioned. These pipelines may guide, or speed up, drug discovery; provide a better understanding of diseases and associated biological phenomena; help planning preclinical wet-lab experiments, and even future clinical trials. This automation of the drug development process might be key to the current issue of low productivity rate that pharmaceutical companies currently face. In this survey, we will particularly focus on two classes of methods: sequential learning and recommender systems, which are active biomedical fields of research.

SELECTION OF CITATIONS
SEARCH DETAIL