Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 894: 164744, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37315601

ABSTRACT

Boron (B) is released to terrestrial and aquatic environments through both natural and anthropogenic sources. This review describes the current knowledge on B contamination in soil and aquatic environments in relation to its geogenic and anthropogenic sources, biogeochemistry, environmental and human health impacts, remediation approaches, and regulatory practices. The common naturally occurring sources of B include borosilicate minerals, volcanic eruptions, geothermal and groundwater streams, and marine water. Boron is extensively used to manufacture fiberglass, thermal-resistant borosilicate glass and porcelain, cleaning detergents, vitreous enamels, weedicides, fertilizers, and B-based steel for nuclear shields. Anthropogenic sources of B released into the environment include wastewater for irrigation, B fertilizer application, and waste from mining and processing industries. Boron is an essential element for plant nutrition and is taken up mainly as boric acid molecules. Although B deficiency in agricultural soils has been observed, B toxicity can inhibit plant growth in soils under arid and semiarid regions. High B intake by humans can be detrimental to the stomach, liver, kidneys and brain, and eventually results in death. Amelioration of soils and water sources enriched with B can be achieved by immobilization, leaching, adsorption, phytoremediation, reverse osmosis, and nanofiltration. The development of cost-effective technologies for B removal from B-rich irrigation water including electrodialysis and electrocoagulation techniques is likely to help control the predominant anthropogenic input of B to the soil. Future research initiatives for the sustainable remediation of B contamination using advanced technologies in soil and water environments are also recommended.


Subject(s)
Boron , Minerals , Humans , Boron/toxicity , Risk Management , Soil , Water
2.
PLoS One ; 17(10): e0275589, 2022.
Article in English | MEDLINE | ID: mdl-36194606

ABSTRACT

An important challenge for mankind today is to find a plant-based source of iodine, instead of table salt, which would provide the recommended daily dosage of iodine. The aim of this work was to study the accumulation of iodine and the physiochemical changes in bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.) irrigated with iodine-containing water. Applying iodine at concentration of 0.5 mg L-1 resulted 51, 18, and 35% decrement in biomass of bean fruit, while in pea fruit, a 13% reduction and a 3 and 2% increment were observed when the plants were cultivated in sand, sandy silt, and silt, respectively. The highest iodine concentrations in the bean and pea fruits were detected in plants cultivated in silt soil with concentration of 0.5 mg I- L-1 and amounted to 1.6 and 0.4 mg kg-1, respectively. In presence of iodine at concentration of 0.5 mg L-1, the concentration of magnesium, phosphorous, manganese and iron increased in the bean fruit, while in the case of pea, at iodine concentration above 0.1 mg L-1 the uptake of these nutrients were hampered. Based on these facts, the iodized bean can be recommended as a possible food source to enhance the iodine intake.


Subject(s)
Iodine , Phaseolus , Biofortification , Iodides , Iron , Magnesium , Manganese , Pisum sativum , Sand , Sodium Chloride, Dietary , Soil , Water
3.
Plants (Basel) ; 10(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34685895

ABSTRACT

Additional Selenium (Se) intake may be recommended in areas of Se deficiency to prevent various human diseases. One possibility for this is biofortification. In this experiment, the effect of irrigation water containing 100 and 500 µg L-1 Se, in the form of Na2SeO4, on green bean, cabbage, potato and tomato was investigated in a greenhouse pot experiment with sand, silty sand and silt soils. The chlorophyll content index was usually improved by Se and was significantly higher in potato in sand and silty sand and in tomato in silty sand and silt soils. The Se content of edible plant parts increased 63-fold in the 100 µg L-1 Se treatment and almost 400-fold in the 500 µg L-1 Se treatment, averaged over the four species and the three soils. Irrigation water with a Se content of 100 µg L-1 may be suitable for the production of functional food in the case of green beans, potatoes and tomatoes. However, due to its greater Se accumulation, cabbage should only be irrigated with a lower Se concentration. The use of Se-enriched irrigation water might be a suitable method for Se biofortification without a significant reduction in plant biomass production and without a remarkable modification of other macro- and microelement contents.

4.
Front Plant Sci ; 12: 658892, 2021.
Article in English | MEDLINE | ID: mdl-34194449

ABSTRACT

The most important environmental source of boron (B) contamination is irrigation water. The data on the effect of B on the elemental composition in the edible parts of vegetables are scarce. A greenhouse pot experiment investigated the effect of irrigation water containing 0.1 and 0.5 mg/L B on the biomass, elemental (e.g., B, Mg, K, Fe, Cu, and Zn) composition, and photosynthetic parameters of tomato (Solanum lycopersicum), green bean (Phaseolus vulgaris), potato (Solanum tuberosum), and cabbage (Brassica oleracea) plants grown on 10 kg of sand, silty sand, or silty soil. The biomass of the edible part was unaffected by B treatment. The soil type determined the effect of B irrigation on the elemental composition of vegetables. The B content increased by 19% in tomatoes grown on silty soil. The 0.1 mg/L B treatment facilitated tomato fruit ripening on all soils, and the 0.5 mg/L B treatment doubled its chlorophyll content index (CCI) on silty soil. The 0.5 mg/L B treatment negatively affected the nutritional value of green beans on all soils, decreasing the Fe and K contents by an average of 83 and 34%, respectively. The elemental composition of potato was unaffected by the treatments, but the CCI of potato leaves increased in the 0.5 mg/L B treatment by 26%. The B content was increased by 39% in cabbages grown on light-textured soils. In conclusion, B concentration of up to 0.5 mg/L in irrigation water had no significant beneficial or adverse effect on the investigated vegetables, but 0.1 mg/L B treatment could shorten tomato fruit maturation time on B-poor soils. The B levels in vegetables remained suitable for human consumption.

5.
Front Plant Sci ; 11: 593047, 2020.
Article in English | MEDLINE | ID: mdl-33362822

ABSTRACT

Accumulation of iodine by potato (Solanum tuberosum L.) and carrot (Daucus carota L. var. sativus) plants cultivated on different soils (sand, sandy silt, and silt) using irrigation water containing iodine at concentrations of 0.1 and 0.5 mg/L was investigated. In the edible organs of potato and carrot control plants grown on sand, sandy silt, and silt soils, the iodine concentrations were 0.15, 0.17, and 0.20 mg/kg (potato) and 0.012, 0.012, and 0.013 mg/kg (carrot); after the treatment by applying 0.5 mg/L iodine dosage, the iodine concentrations were 0.21, 0.19, 0.27 mg/kg (potato) and 3.5, 3.7, 3.0 mg/kg (carrot), respectively. Although the iodine treatment had no significant effect on the biomass production of these plants, in potato tubers, it resulted in higher Fe and lower Mg and P concentrations, whereas no similar trend was observable in carrot roots. The accumulation of Mn, Cu, Zn, and B in the edible part of both plants was not influenced by the iodine treatment. The soil properties did not have a significant impact on biomass production under the same environmental conditions. The concentration and the distribution of iodine in both plants were slightly modified by the growing medium; however, the photosynthetic efficiency and the chlorophyll content index of potato plants cultivated in silt soil increased significantly. Potato plant was not suitable for biofortification with iodine, while considering the iodine concentration and the moisture content of carrot roots, it can be calculated that consuming 100 g fresh carrot would cover about 38% of the daily iodine intake requirement for an average adult person.

6.
Sci Total Environ ; 731: 138988, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32438089

ABSTRACT

Biochar is produced from a wide range of organic materials by pyrolysis, specifically for improvement of poor quality soils. One of the main issues nowadays in studying biochar as soil amendment is to upscale experiments and move from short-term, laboratory conditions to long-term field trials. This paper presents a long-term field study, being the final step of a scale-up technology development, on grain husk and paper fibre sludge biochar application for soil improvement with focus on two degraded soil types of a temperate region. The effects of biochar on an acidic and a calcareous sandy agricultural soil were studied applying a complex approach including physico-chemical, biological and ecotoxicological methods. Our study demonstrated that the applied biochar had positive direct and indirect influences on the acidic sandy soil, but these effects were different in terms of extent and time. 30 t/ha biochar addition improved the pH of the acidic sandy soil by 24% and also increased significantly the nutrient concentrations (P2O5 by 68%, K2O by 11% and organic matter by 33%), and the water-holding capacity after 30 months. Furthermore, biochar addition improved also the microbiological activity and diversity in the acidic sandy soil. Biochar application did not induce any negative effects. Biochar had no toxic effect on the plants and the biochar-treated soil provided a more liveable habitat for soil living animals than the untreated acidic sandy soil. The favourable biochar-mediated influences on soil properties were manifested mainly in the acidic sandy soil, proving that the biochar-related advantages have to be verified for different soil types. The benefits of grain husk and paper fibre sludge biochar application in an acidic sandy soil were confirmed on the long term by the applied tiered approach.


Subject(s)
Sewage , Soil , Animals , Charcoal , Sand
7.
Bioresour Technol ; 291: 121861, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31376666

ABSTRACT

The aim of this work was to investigate whether the agronomic traits of vermicompost prepared from partially stabilised sewage sludge digestate after thermophilic composting were more favourable than those of conventional compost. The effects of various additives (green waste, spent mushroom compost, wheat straw, biochar) were also tested after 1.5 months precomposting followed by 3 months vermicomposting with Eisenia fetida or by compost maturing. Vermicomposting did not result in significantly more intensive mineralisation than composting; the average organic carbon contents were 21.2 and 22.2% in vermicomposts and composts, respectively. Hence, the average total (N: 2.4%; P: 1.9%; K: 0.9%) and available (N: 160 mg/kg; P: 161 mg/kg; K: 0.8%) macronutrient concentrations were the same in both treatments. The processing method did not influence the organic matter quality (E4/E6) either. However, on average the concentration of the plant growth regulator kinetin was more than twice as high in vermicomposts.


Subject(s)
Agrochemicals/metabolism , Composting , Sewage , Agrochemicals/analysis , Animals , Oligochaeta/metabolism , Sewage/chemistry
8.
Environ Sci Pollut Res Int ; 23(23): 23573-23581, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27614645

ABSTRACT

In the course of the clean-up operation after the red mud inundation in 2010, red mud was removed from the soil surface in places where the layer was more than 5 cm deep. Before its removal, the red mud seeped into the soil. In 2012, soil samples were taken from depths of 0 to 20 and 20 to 40 cm on some of the affected areas. The parameters investigated were pH, organic matter, salt%, and the total and mobile fractions of various elements. The values recorded in 2012 were compared with those measured immediately after the removal of the red mud in 2010 and with the background and clean-up target concentrations. The pH values remained below the designated limit, while the salt content only exhibited values in the weakly salty range on areas at the greatest distance from the dam. In the central part of the inundated area, total Na contents above the 900 mg/kg target value were observed, but the Na content in the 0-20-cm layer generally exhibited a decrease due to leaching. The pH and As concentration also showed a decline on several areas compared with the values recorded in 2010. Total As and Co contents in excess of the target values were recorded on the lowest-lying part of the flooded area, probably because the finest red mud particles were deposited the furthest from the dam, where they seeped into the soil. Nevertheless, the mobility and plant availability of both elements remained moderate. The total contents of both Co and Mo, however, exhibited a significant rise compared with both the background value and the 2010 data. The monitoring of the cleaned-up areas showed that after a 2-year period element concentrations that exceeded the target values and could be attributed to the red mud pollution were only detectable on the lowest-lying areas.


Subject(s)
Agriculture , Environmental Pollution , Environmental Restoration and Remediation , Floods , Soil Pollutants/isolation & purification , Hungary , Soil/chemistry , Soil Pollutants/analysis
9.
Environ Monit Assess ; 184(12): 7461-71, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22350444

ABSTRACT

This work established background concentrations for the pseudo total (HNO(3) + H(2)O(2)-soluble), mobilisable (NH(4)-acetate + EDTA-soluble) and mobile (1 M NH(4)NO(3)-soluble) element fractions of Hungarian surface soils that can be used as reference values for the soil quality standards. The 193 soils investigated were taken from the Hungarian Soil Information and Monitoring System. The background values for Al, As, B, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr and Zn were given as a range covering 95% of the variance of the representative samples. The differences between observed element concentrations and the calculated background values indicated anthropogenic or pedogenic impact in each fraction. The comparison of the calculated background values with the Hungarian quality standards and the contamination limit values of other countries showed that the limit values of a certain region or country are not suitable for other areas. Generally, Mn and Al had the highest, while Cd had the lowest concentration in each fraction. Cr and Al were the least and Sr was the most mobile element. The principal component analysis indicated different geochemical and physico-chemical behaviour of the elements in the fractions; the pseudo total fraction was influenced more by the geological behaviour, while mobilisable and mobile fraction explained a much higher proportion of the total variance of soil physico-chemical properties than soil geochemical properties. The Cd-Ni and Co-Mn element pairs were always in the same principal component in each fractions indicating similar geogenic origin and showing that their solubility changes are similar in function of soil properties.


Subject(s)
Environmental Monitoring , Hazardous Substances/analysis , Soil Pollutants/analysis , Soil/chemistry , Hungary
SELECTION OF CITATIONS
SEARCH DETAIL