Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431844

ABSTRACT

The application of 2-hydroxypropyl-beta-cyclodextrin (HPBCD) in the treatment of the rare cholesterol and lipid storage disorder Niemann-Pick disease type C opened new perspectives in the development of an efficient therapy. Even if the systemic administration of HPBCD was found to be effective, its low permeability across the blood-brain barrier (BBB) limited the positive neurological effects. Nevertheless, the cellular interactions of HPBCD with brain capillary endothelial cells have not been investigated in detail. In this study, the cytotoxicity, permeability, and cellular internalization of HPBCD on primary rat and immortalized human (hCMEC/D3) brain capillary endothelial cells were investigated. HPBCD shows no cytotoxicity on endothelial cells up to 100 µM, measured by impedance kinetics. Using a fluorescent derivative of HPBCD (FITC-HPBCD) the permeability measurements reveal that on an in vitro triple co-culture BBB model, FITC-HPBCD has low permeability, 0.50 × 10-6 cm/s, while on hCMEC/D3 cell layers, the permeability is higher, 1.86 × 10-5 cm/s. FITC-HPBCD enters brain capillary endothelial cells, is detected in cytoplasmic vesicles and rarely localized in lysosomes. The cellular internalization of HPBCD at the BBB can help to develop new strategies for improved HPBCD effects after systemic administration.


Subject(s)
Brain , Endothelial Cells , Animals , Humans , Rats , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Fluorescein-5-isothiocyanate , Cells, Cultured
2.
Molecules ; 27(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35268690

ABSTRACT

Cyclodextrins are high molecular weight, hydrophilic, cyclic, non-reducing oligosaccharides, applied as excipients for the improvement of the solubility and permeability of insoluble active pharmaceutical ingredients. On the other hand, beta-cyclodextrins are used as cholesterol sequestering agents in life sciences. Recently, we demonstrated the cellular internalization and intracellular effects of cyclodextrins on Caco-2 cells. In this study, we aimed to further investigate the endocytosis of (2-hydroxylpropyl)-beta-(HPBCD) and random methylated-beta-cyclodextrin (RAMEB) to test their cytotoxicity, NF-kappa B pathway induction, autophagy, and lysosome formation on HeLa cells. These derivatives were able to enter the cells; however, major differences were revealed in the inhibition of their endocytosis compared to Caco-2 cells. NF-kappa B p65 translocation was not detected in the cell nuclei after HPBCD or RAMEB pre-treatment and cyclodextrin treatment did not enhance the formation of autophagosomes. These cyclodextrin derivates were partially localized in lysosomes after internalization.


Subject(s)
Cyclodextrins , Caco-2 Cells , Cyclodextrins/pharmacology , Excipients , HeLa Cells , Humans , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...