Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Bioinformatics ; 29(5): 614-21, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23329413

ABSTRACT

MOTIVATION: The avalanche of data arriving since the development of NGS technologies have prompted the need for developing fast, accurate and easily automated bioinformatic tools capable of dealing with massive datasets. Among the most productive applications of NGS technologies is the sequencing of cellular RNA, known as RNA-Seq. Although RNA-Seq provides similar or superior dynamic range than microarrays at similar or lower cost, the lack of standard and user-friendly pipelines is a bottleneck preventing RNA-Seq from becoming the standard for transcriptome analysis. RESULTS: In this work we present a pipeline for processing and analyzing RNA-Seq data, that we have named Grape (Grape RNA-Seq Analysis Pipeline Environment). Grape supports raw sequencing reads produced by a variety of technologies, either in FASTA or FASTQ format, or as prealigned reads in SAM/BAM format. A minimal Grape configuration consists of the file location of the raw sequencing reads, the genome of the species and the corresponding gene and transcript annotation. Grape first runs a set of quality control steps, and then aligns the reads to the genome, a step that is omitted for prealigned read formats. Grape next estimates gene and transcript expression levels, calculates exon inclusion levels and identifies novel transcripts. Grape can be run on a single computer or in parallel on a computer cluster. It is distributed with specific mapping and quantification tools, but given its modular design, any tool supporting popular data interchange formats can be integrated. AVAILABILITY: Grape can be obtained from the Bioinformatics and Genomics website at: http://big.crg.cat/services/grape.


Subject(s)
Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Software , Chromosome Mapping , Computational Biology , Exons , Genome , High-Throughput Nucleotide Sequencing
2.
Nature ; 489(7414): 101-8, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22955620

ABSTRACT

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.


Subject(s)
DNA/genetics , Encyclopedias as Topic , Genome, Human/genetics , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid/genetics , Transcription, Genetic/genetics , Transcriptome/genetics , Alleles , Cell Line , DNA, Intergenic/genetics , Enhancer Elements, Genetic , Exons/genetics , Gene Expression Profiling , Genes/genetics , Genomics , Humans , Polyadenylation/genetics , Protein Isoforms/genetics , RNA/biosynthesis , RNA/genetics , RNA Editing/genetics , RNA Splicing/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL