Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 23(4): 507-519, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38159110

ABSTRACT

The small-molecule inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), elimusertib, is currently being tested clinically in various cancer entities in adults and children. Its preclinical antitumor activity in pediatric malignancies, however, is largely unknown. We here assessed the preclinical activity of elimusertib in 38 cell lines and 32 patient-derived xenograft (PDX) models derived from common pediatric solid tumor entities. Detailed in vitro and in vivo molecular characterization of the treated models enabled the evaluation of response biomarkers. Pronounced objective response rates were observed for elimusertib monotherapy in PDX, when treated with a regimen currently used in clinical trials. Strikingly, elimusertib showed stronger antitumor effects than some standard-of-care chemotherapies, particularly in alveolar rhabdomysarcoma PDX. Thus, elimusertib has strong preclinical antitumor activity in pediatric solid tumor models, which may translate to clinically meaningful responses in patients.


Subject(s)
Antineoplastic Agents , Neoplasms , Child , Humans , Xenograft Model Antitumor Assays , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Biomarkers , Cell Line, Tumor
3.
Nat Commun ; 11(1): 5823, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33199677

ABSTRACT

MYCN amplification drives one in six cases of neuroblastoma. The supernumerary gene copies are commonly found on highly rearranged, extrachromosomal circular DNA (ecDNA). The exact amplicon structure has not been described thus far and the functional relevance of its rearrangements is unknown. Here, we analyze the MYCN amplicon structure using short-read and Nanopore sequencing and its chromatin landscape using ChIP-seq, ATAC-seq and Hi-C. This reveals two distinct classes of amplicons which explain the regulatory requirements for MYCN overexpression. The first class always co-amplifies a proximal enhancer driven by the noradrenergic core regulatory circuit (CRC). The second class of MYCN amplicons is characterized by high structural complexity, lacks key local enhancers, and instead contains distal chromosomal fragments harboring CRC-driven enhancers. Thus, ectopic enhancer hijacking can compensate for the loss of local gene regulatory elements and explains a large component of the structural diversity observed in MYCN amplification.


Subject(s)
Chromosomes, Human/genetics , Enhancer Elements, Genetic/genetics , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Acetylation , Base Sequence , Cell Line, Tumor , DNA Methylation/genetics , DNA, Circular/genetics , Epigenesis, Genetic , Histones/metabolism , Humans , Kaplan-Meier Estimate , Lysine/metabolism , Nanopore Sequencing
5.
Nat Genet ; 52(1): 29-34, 2020 01.
Article in English | MEDLINE | ID: mdl-31844324

ABSTRACT

Extrachromosomal circularization of DNA is an important genomic feature in cancer. However, the structure, composition and genome-wide frequency of extrachromosomal circular DNA have not yet been profiled extensively. Here, we combine genomic and transcriptomic approaches to describe the landscape of extrachromosomal circular DNA in neuroblastoma, a tumor arising in childhood from primitive cells of the sympathetic nervous system. Our analysis identifies and characterizes a wide catalog of somatically acquired and undescribed extrachromosomal circular DNAs. Moreover, we find that extrachromosomal circular DNAs are an unanticipated major source of somatic rearrangements, contributing to oncogenic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. Cancer-causing lesions can emerge out of circle-derived rearrangements and are associated with adverse clinical outcome. It is highly probable that circle-derived rearrangements represent an ongoing mutagenic process. Thus, extrachromosomal circular DNAs represent a multihit mutagenic process, with important functional and clinical implications for the origins of genomic remodeling in cancer.


Subject(s)
Carcinogenesis/pathology , DNA, Circular/genetics , Extrachromosomal Inheritance/genetics , Gene Rearrangement , Genome, Human , Neuroblastoma/pathology , Oncogenes/genetics , Recombination, Genetic , Humans , Neuroblastoma/genetics , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...