Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 790: 148009, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34380264

ABSTRACT

Plastic litter is accumulating on pristine northern European beaches, including the European Arctic, and questions remain about the exact origins and sources. Here we investigate plausible fishery and consumer-related sources of beach littering, using a combination of information from expert stakeholder discussions, litter observations and a quantitative tool - a drift model - for forecasting and backtracking likely pathways of pollution. The numerical experiments were co-designed together with practice experts. The drift model itself was forced by operational ocean current, wave and weather forecasts. The model results were compared to a database of marine litter on beaches, collected every year according to the standardized monitoring program of the Oslo/Paris Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR). By comparing the heterogeneous beach observations to the model simulations, we are able to highlight probable sources. Two types of plastic are considered in the simulations: floating plastic litter and submerged, buoyant microplastics. We find that the model simulations are plausible in terms of the potential sources and the observed plastic litter. Our analysis results in identifiable sources of plastic waste found on each beach, providing a basis for stakeholder actions.


Subject(s)
Bathing Beaches , Plastics , Environmental Monitoring , Environmental Pollution , Waste Products/analysis
2.
Mar Pollut Bull ; 146: 631-638, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31426202

ABSTRACT

In oil spill models, vertical mixing due to turbulence is commonly modelled by random walk. If the eddy diffusivity varies with depth, failing to take the derivative of the diffusivity into account in the random walk scheme will lead to incorrect results. Depending on the diffusivity profile, the result may be either over- or underprediction of the amount of surfaced oil. The importance of using consistent random walk schemes has been known for decades in, e.g., the plankton modelling community. However, it appears not to be common knowledge in the oil spill community, with inconsistent random walk schemes appearing even in recent publications. We demonstrate and quantify the error due to inconsistent random walk, using a simplified oil spill model, and two different diffusivity profiles. In the two cases considered, a commonly used inconsistent scheme predicts respectively 54% and 202% the amount of surface oil, compared to a consistent scheme.


Subject(s)
Models, Theoretical , Petroleum Pollution , Water Pollution, Chemical , Computer Simulation , Diffusion , Random Allocation , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...