Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Front Artif Intell ; 7: 1345179, 2024.
Article in English | MEDLINE | ID: mdl-38720912

ABSTRACT

The rapid proliferation of data across diverse fields has accentuated the importance of accurate imputation for missing values. This task is crucial for ensuring data integrity and deriving meaningful insights. In response to this challenge, we present Xputer, a novel imputation tool that adeptly integrates Non-negative Matrix Factorization (NMF) with the predictive strengths of XGBoost. One of Xputer's standout features is its versatility: it supports zero imputation, enables hyperparameter optimization through Optuna, and allows users to define the number of iterations. For enhanced user experience and accessibility, we have equipped Xputer with an intuitive Graphical User Interface (GUI) ensuring ease of handling, even for those less familiar with computational tools. In performance benchmarks, Xputer often outperforms IterativeImputer in terms of imputation accuracy. Furthermore, Xputer autonomously handles a diverse spectrum of data types, including categorical, continuous, and Boolean, eliminating the need for prior preprocessing. Given its blend of performance, flexibility, and user-friendly design, Xputer emerges as a state-of-the-art solution in the realm of data imputation.

2.
Patterns (N Y) ; 5(1): 100897, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38264719

ABSTRACT

Leveraging the potential of machine learning and recognizing the broad applications of binary classification, it becomes essential to develop platforms that are not only powerful but also transparent, interpretable, and user friendly. We introduce alphaML, a user-friendly platform that provides clear, legible, explainable, transparent, and elucidative (CLETE) binary classification models with comprehensive customization options. AlphaML offers feature selection, hyperparameter search, sampling, and normalization methods, along with 15 machine learning algorithms with global and local interpretation. We have integrated a custom metric for hyperparameter search that considers both training and validation scores, safeguarding against under- or overfitting. Additionally, we employ the NegLog2RMSL scoring method, which uses both training and test scores for a thorough model evaluation. The platform has been tested using datasets from multiple domains and offers a graphical interface, removing the need for programming expertise. Consequently, alphaML exhibits versatility, demonstrating promising applicability across a broad spectrum of tabular data configurations.

3.
Mol Cancer Res ; 22(1): 94-103, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37756563

ABSTRACT

Receptor tyrosine kinase KIT is frequently activated in acute myeloid leukemia (AML). While high PRL2 (PTP4A2) expression is correlated with activation of SCF/KIT signaling in AML, the underlying mechanisms are not fully understood. We discovered that inhibition of PRL2 significantly reduces the burden of oncogenic KIT-driven leukemia and extends leukemic mice survival. PRL2 enhances oncogenic KIT signaling in leukemia cells, promoting their proliferation and survival. We found that PRL2 dephosphorylates CBL at tyrosine 371 and inhibits its activity toward KIT, leading to decreased KIT ubiquitination and enhanced AKT and ERK signaling in leukemia cells. IMPLICATIONS: Our studies uncover a novel mechanism that fine-tunes oncogenic KIT signaling in leukemia cells and will likely identify PRL2 as a novel therapeutic target in AML with KIT mutations.


Subject(s)
Leukemia, Myeloid, Acute , Phosphoric Monoester Hydrolases , Animals , Mice , Leukemia, Myeloid, Acute/genetics , Mutation , Phosphoric Monoester Hydrolases/genetics , Phosphorylation , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction/genetics
4.
Cancers (Basel) ; 15(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38001685

ABSTRACT

The type III receptor tyrosine kinase FLT3 is a pivotal kinase for hematopoietic progenitor cell regulation, with significant implications in acute myeloid leukemia (AML) through mutations like internal tandem duplication (ITD). This study delves into the structural intricacies of FLT3, the roles of activation loop mutants, and their interaction with tyrosine kinase inhibitors. Coupled with this, the research leverages molecular contrastive learning and protein language modeling to examine interactions between small molecule inhibitors and FLT3 activation loop mutants. Utilizing the ConPLex platform, over 5.7 million unique FLT3 activation loop mutants-small molecule pairs were analyzed. The binding free energies of three inhibitors were assessed, and cellular apoptotic responses were evaluated under drug treatments. Notably, the introduction of the Xepto50 scoring system provides a nuanced metric for drug efficacy. The findings underscore the modulation of molecular interactions and cellular responses by Y842 mutations in FLT3-KD, highlighting the need for tailored therapeutic approaches in FLT3-ITD-related malignancies.

5.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835239

ABSTRACT

Despite incredible progress in cancer treatment, therapy resistance remains the leading limiting factor for long-term survival. During drug treatment, several genes are transcriptionally upregulated to mediate drug tolerance. Using highly variable genes and pharmacogenomic data for acute myeloid leukemia (AML), we developed a drug sensitivity prediction model for the receptor tyrosine kinase inhibitor sorafenib and achieved more than 80% prediction accuracy. Furthermore, by using Shapley additive explanations for determining leading features, we identified AXL as an important feature for drug resistance. Drug-resistant patient samples displayed enrichment of protein kinase C (PKC) signaling, which was also identified in sorafenib-treated FLT3-ITD-dependent AML cell lines by a peptide-based kinase profiling assay. Finally, we show that pharmacological inhibition of tyrosine kinase activity enhances AXL expression, phosphorylation of the PKC-substrate cyclic AMP response element binding (CREB) protein, and displays synergy with AXL and PKC inhibitors. Collectively, our data suggest an involvement of AXL in tyrosine kinase inhibitor resistance and link PKC activation as a possible signaling mediator.


Subject(s)
Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Sorafenib , Humans , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , fms-Like Tyrosine Kinase 3/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Sorafenib/therapeutic use
6.
Cell Rep ; 40(6): 111177, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35947955

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease with variable patient responses to therapy. Selinexor, an inhibitor of nuclear export, has shown promising clinical activity for AML. To identify the molecular context for monotherapy sensitivity as well as rational drug combinations, we profile selinexor signaling responses using phosphoproteomics in primary AML patient samples and cell lines. Functional phosphosite scoring reveals that p53 function is required for selinexor sensitivity consistent with enhanced efficacy of selinexor in combination with the MDM2 inhibitor nutlin-3a. Moreover, combining selinexor with the AKT inhibitor MK-2206 overcomes dysregulated AKT-FOXO3 signaling in resistant cells, resulting in synergistic anti-proliferative effects. Using high-throughput spatial proteomics to profile subcellular compartments, we measure global proteome and phospho-proteome dynamics, providing direct evidence of nuclear translocation of FOXO3 upon combination treatment. Our data demonstrate the potential of phosphoproteomics and functional phosphorylation site scoring to successfully pinpoint key targetable signaling hubs for rational drug combinations.


Subject(s)
Leukemia, Myeloid, Acute , Tumor Suppressor Protein p53 , Apoptosis , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Hydrazines , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Proteome/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Triazoles , Tumor Suppressor Protein p53/metabolism
7.
Mol Oncol ; 13(12): 2646-2662, 2019 12.
Article in English | MEDLINE | ID: mdl-31545548

ABSTRACT

Colorectal cancer (CRC) is the third most prevalent cancer worldwide causing an estimated 700 000 deaths annually. Different types of treatment are available for patients with advanced metastatic colorectal cancer, including targeted biological agents, such as cetuximab, a monoclonal antibody that targets EGFR. We have previously reported a study indicating multiple levels of interaction between metallopeptidase inhibitor 1 (TIMP-1) and the epidermal growth factor (EGF) signaling axis, which could explain how TIMP-1 levels can affect the antitumor effects of EGFR inhibitors. We also reported an association between TIMP-1-mediated cell invasive behavior and KRAS status. To gain insight into the molecular mechanisms underlying the effects of TIMP-1 in CRC, we examined by transcriptomics, proteomics, and kinase activity profiling a matched pair of isogenic human CRC isogenic DLD-1 CRC cell clones, bearing either an hemizygous KRAS wild-type allele or KRAS G13D mutant allele, exposed, or not, to TIMP-1. Omics analysis of the two cell lines identified the receptor tyrosine kinase c-Kit, a proto-oncogene that can modulate cell proliferation and invasion in CRC, as a target for TIMP-1. We found that exposure of DLD-1 CRC cells to exogenously added TIMP-1 promoted phosphorylation of c-Kit, indicative of a stimulatory effect of TIMP-1 on the c-Kit signaling axis. In addition, TIMP-1 inhibited c-Kit shedding in CRC cells grown in the presence of exogenous TIMP-1. Given the regulatory roles that c-Kit plays in cell proliferation and migration, and the realization that c-Kit is an important oncogene in CRC, it is likely that some of the biological effects of TIMP-1 overexpression in CRC may be exerted through its effect on c-Kit signaling.


Subject(s)
Colorectal Neoplasms/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction , Tissue Inhibitor of Metalloproteinase-1/metabolism , Cell Line, Tumor , Colorectal Neoplasms/genetics , Humans , Proto-Oncogene Mas , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics
8.
Blood Cancer J ; 9(8): 54, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31346159

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Physiol Rev ; 99(3): 1433-1466, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31066629

ABSTRACT

FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.


Subject(s)
fms-Like Tyrosine Kinase 3/physiology , Animals , Antineoplastic Agents/pharmacology , Hematopoietic Stem Cells/physiology , Humans , Membrane Proteins/genetics , Membrane Proteins/physiology , Signal Transduction , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics
11.
Int J Biochem Cell Biol ; 107: 32-37, 2019 02.
Article in English | MEDLINE | ID: mdl-30552988

ABSTRACT

The receptor tyrosine kinase FLT3 is expressed almost exclusively in the hematopoietic compartment. Binding of its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. This leads to autophosphorylation of FLT3 on several tyrosine residues which constitute high affinity binding sites for signal transduction molecules. Recruitment of these signal transduction molecules to FLT3 leads to the activation of several signal transduction pathways that regulate cell survival, cell proliferation and differentiation. Oncogenic, constitutively active mutants of FLT3 are known to be expressed in acute myeloid leukemia and to correlate with poor prognosis. Activation of the receptor mediates cell survival, cell proliferation and differentiation of cells. Several of the signal transduction pathways downstream of FLT3 have been shown to include various members of the SRC family of kinases (SFKs). They are involved in regulating the activity of RAS/ERK pathways through the scaffolding protein GAB2 and the adaptor protein SHC. They are also involved in negative regulation of signaling through phosphorylation of the ubiquitin E3 ligase CBL. Initially studied as the SFKs, as if they were a homogenous group of kinases, recent data suggest that each SFK has its own specific signaling capabilities where some are involved in positive signaling, while others are involved in negative signaling. This review discusses some recent insights into how SFKs are involved in FLT3 signaling.


Subject(s)
Signal Transduction , fms-Like Tyrosine Kinase 3/metabolism , src-Family Kinases/metabolism , Animals , Humans
12.
Oncogene ; 37(47): 6180-6194, 2018 11.
Article in English | MEDLINE | ID: mdl-30013190

ABSTRACT

Aberrant activation of anaplastic lymphoma kinase (ALK) can cause sporadic and familial neuroblastoma. Using a proteomics approach, we identified Bruton's tyrosine kinase (BTK) as a novel ALK interaction partner, and the physical interaction was confirmed by co-immunoprecipitation. BTK is expressed in neuroblastoma cell lines and tumor tissues. Its high expression correlates with poor relapse-free survival probability of neuroblastoma patients. Mechanistically, we demonstrated that BTK potentiates ALK-mediated signaling in neuroblastoma, and increases ALK stability by reducing ALK ubiquitination. Both ALKWT and ALKF1174L can induce BTK phosphorylation and higher capacity of ALKF1174L is observed. Furthermore, the BTK inhibitor ibrutinib can effectively inhibit the growth of neuroblastoma xenograft in nude mice, and the combination of ibrutinib and the ALK inhibitor crizotinib further enhances the inhibition. Our study provides strong rationale for clinical trial of ALK-positive neuroblastoma using ibrutinib or the combination of ibrutinib and ALK inhibitors.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/metabolism , Anaplastic Lymphoma Kinase/metabolism , Neuroblastoma/metabolism , Signal Transduction/physiology , Adenine/analogs & derivatives , Animals , Antineoplastic Agents/pharmacology , Crizotinib/pharmacology , Humans , Mice , Mice, Nude , Piperidines , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
13.
Oncogenesis ; 7(6): 48, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29910466

ABSTRACT

In order to investigate the molecular mechanisms by which the oncogenic mutant KIT/D816V causes transformation of cells, we investigated proteins that selectively bind KIT/D816V, but not wild-type KIT, as potential mediators of transformation. By mass spectrometry several proteins were identified, among them a previously uncharacterized protein denoted XKR5 (XK-related protein 5), which is related to the X Kell blood group proteins. We could demonstrate that interaction between XKR5 and KIT/D816V leads to phosphorylation of XKR5 at Tyr 369, Tyr487, and Tyr 543. Tyrosine phosphorylated XKR5 acts as a negative regulator of KIT signaling, which leads to downregulation of phosphorylation of ERK, AKT, and p38. This led to reduced proliferation and colony forming capacity in semi-solid medium. Taken together, our data demonstrate that XKR5 is a novel type of negative regulator of KIT-mediated transformation.

14.
Nat Commun ; 9(1): 1770, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720585

ABSTRACT

Activating signaling mutations are common in acute leukemia with KMT2A (previously MLL) rearrangements (KMT2A-R). These mutations are often subclonal and their biological impact remains unclear. Using a retroviral acute myeloid mouse leukemia model, we demonstrate that FLT3 ITD , FLT3 N676K , and NRAS G12D accelerate KMT2A-MLLT3 leukemia onset. Further, also subclonal FLT3 N676K mutations accelerate disease, possibly by providing stimulatory factors. Herein, we show that one such factor, MIF, promotes survival of mouse KMT2A-MLLT3 leukemia initiating cells. We identify acquired de novo mutations in Braf, Cbl, Kras, and Ptpn11 in KMT2A-MLLT3 leukemia cells that favored clonal expansion. During clonal evolution, we observe serial genetic changes at the Kras G12D locus, consistent with a strong selective advantage of additional Kras G12D . KMT2A-MLLT3 leukemias with signaling mutations enforce Myc and Myb transcriptional modules. Our results provide new insight into the biology of KMT2A-R leukemia with subclonal signaling mutations and highlight the importance of activated signaling as a contributing driver.


Subject(s)
Clonal Evolution , Gene Rearrangement , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Myeloid/genetics , Mutation , Myeloid-Lymphoid Leukemia Protein/genetics , Acute Disease , Animals , Cell Line, Tumor , Cells, Cultured , Gene Expression Regulation, Leukemic , Leukemia, Myeloid/pathology , Mice, Inbred C57BL , Mice, Transgenic , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins p21(ras)/genetics
15.
Sci Rep ; 8(1): 6405, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29686302

ABSTRACT

KIT is a receptor tyrosine kinase (RTK) involved in several cellular processes such as regulation of proliferation, survival and differentiation of early hematopoietic cells, germ cells and melanocytes. Activation of KIT results in phosphorylation of tyrosine residues in the receptor, and recruitment of proteins that mediate downstream signaling and also modulate receptor signaling. Here we show that the SRC-like adaptor protein 2 (SLAP2) binds to wild-type KIT in a ligand-dependent manner and is furthermore found constitutively associated with the oncogenic mutant KIT-D816V. Peptide fishing analysis mapped pY568 and pY570 as potential SLAP2 association sites in KIT, which overlaps with the SRC binding sites in KIT. Expression of SLAP2 in cells expressing the transforming mutant KIT-D816V led to reduced cell viability and reduced colony formation. SLAP2 also partially blocked phosphorylation of several signal transduction molecules downstream of KIT such as AKT, ERK, p38 and STAT3. Finally, SLAP2 expression enhanced ubiquitination of KIT and its subsequent degradation. Taken together, our data demonstrate that SLAP2 negatively modulates KIT-D816V-mediated transformation by enhancing degradation of the receptor.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Cell Transformation, Neoplastic , Proto-Oncogene Proteins c-kit/physiology , Adaptor Proteins, Signal Transducing/metabolism , Animals , COS Cells , Cell Survival , Chlorocebus aethiops , Ligands , Mutation , Phosphorylation , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction , src Homology Domains
16.
Ann Hematol ; 97(5): 773-780, 2018 May.
Article in English | MEDLINE | ID: mdl-29372308

ABSTRACT

Acute myeloid leukemia (AML) remains the most common form of acute leukemia among adults and accounts for a large number of leukemia-related deaths. Mutations in FMS-like tyrosine kinase 3 (FLT3) is one of the most prevalent findings in this heterogeneous disease. The major types of mutations in FLT3 can be categorized as internal tandem duplications (ITD) and point mutations. Recent studies suggest that ITDs not only occur in the juxtamembrane region as originally described, but also in the kinase domain. Although the juxtamembrane ITDs have been well characterized, the tyrosine kinase domain ITDs have not yet been thoroughly studied due to their recent discovery. For this reason, we compared ITD mutations in the juxtamembrane domain with those in the tyrosine kinase domain, as well as with the most common activating point mutation in the tyrosine kinase domain, D835Y. The purpose of this study was to understand whether it is the nature of the mutation or the location of the mutation that plays the main role in leukemogenesis. The various FLT3 mutants were expressed in the murine pro-B cell line Ba/F3 and examined for their capacity to form colonies in semisolid medium. The size and number of colonies formed by Ba/F3 cells expressing either the internal tandem duplication within juxtamembrane domain of the receptor (JMD-ITD) or the tyrosine kinase domain (TKD)-ITD were indistinguishable, while Ba/F3 cells expressing D835Y/FLT3 failed to form colonies. Cell proliferation and cell survival was also significantly higher in TKD-ITD expressing cells, compared to cells expressing D835Y/FLT3. Furthermore, TKD-ITD is capable of inducing phosphorylation of STAT5, while D835Y/FLT3 fails to induce tyrosine phosphorylation of STAT5. Other signal transduction pathways such as the RAS/ERK and the PI3K/AKT pathways were activated to the same level in TKD-ITD cells as compared to D835Y/FLT3 expressing cells. Taken together, our data suggest that TKD-ITD displays similar oncogenic potential to the JMD-ITD but a higher oncogenic potential than the D835Y point mutation.


Subject(s)
Carcinogenesis/genetics , Gain of Function Mutation/genetics , Protein-Tyrosine Kinases/genetics , Tandem Repeat Sequences/genetics , fms-Like Tyrosine Kinase 3/genetics , Animals , Cell Line, Tumor , Cell Survival/physiology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mutation/genetics , Protein-Tyrosine Kinases/biosynthesis , fms-Like Tyrosine Kinase 3/biosynthesis
17.
Sci Rep ; 7(1): 13734, 2017 10 23.
Article in English | MEDLINE | ID: mdl-29062038

ABSTRACT

The non-receptor tyrosine kinase LCK belongs to the SRC family of kinases. SRC family kinases are proto-oncogenes that have long been known to play key roles in cell proliferation, motility, morphology and survival. Here we show that LCK regulates the function of the type III receptor tyrosine kinase FLT3 in murine pro-B cells. We observed that expression of LCK significantly enhances the colony forming capacity of the constitutively active FLT3 mutant FLT3-ITD (internal tandem duplication). Furthermore, cells expressing LCK developed tumor earlier compared to cells transfected with empty control vector. Staining of the tissues from mouse xenografts showed higher Ki67 staining in cells expressing LCK suggesting that expression of LCK enhances the FLT3-ITD-mediated proliferative capacity. LCK expression did not affect either FLT3-WT or FLT3-ITD -induced AKT, ERK1/2 or p38 phosphorylation. However, LCK expression significantly enhanced FLT3-ITD-mediated STAT5 phosphorylation. Taken together, our data suggest that LCK cooperates with oncogenic FLT3-ITD in cellular transformation.


Subject(s)
Cell Transformation, Neoplastic , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Tandem Repeat Sequences/genetics , fms-Like Tyrosine Kinase 3/genetics , Animals , Cell Line, Tumor , Cell Survival , Female , Gene Expression Regulation, Neoplastic , Mice , Phosphorylation , STAT5 Transcription Factor/metabolism , Signal Transduction
18.
Mol Cancer Res ; 15(9): 1265-1274, 2017 09.
Article in English | MEDLINE | ID: mdl-28584020

ABSTRACT

The oncogenic D816V mutation of the KIT receptor is well characterized in systemic mastocytosis and acute myeloid leukemia. Although KITD816V has been found in melanoma, its function and involvement in this malignancy is not understood. Here we show that KITD816V induces tyrosine phosphorylation of MITF through a triple protein complex formation between KIT, MITF, and SRC family kinases. In turn, phosphorylated MITF activates target genes that are involved in melanoma proliferation, cell-cycle progression, suppression of senescence, survival, and invasion. By blocking the triple protein complex formation, thus preventing MITF phosphorylation, the cells became hypersensitive to SRC inhibitors. We have therefore delineated a mechanism behind the oncogenic effects of KITD816V in melanoma and provided a rationale for the heightened SRC inhibitor sensitivity in KITD816V transformed cells.Implications: This study demonstrates that an oncogenic tyrosine kinase mutant, KITD816V, can alter the transcriptional program of the transcription factor MITF in melanoma Mol Cancer Res; 15(9); 1265-74. ©2017 AACR.


Subject(s)
Melanoma/genetics , Melanoma/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , src-Family Kinases/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Drosophila , HEK293 Cells , Humans , Melanoma/pathology , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Microphthalmia-Associated Transcription Factor/genetics , Phosphorylation , Proto-Oncogene Proteins c-kit/genetics , Signal Transduction , Skin Neoplasms/pathology , Transfection , Zebrafish
19.
Cell Mol Life Sci ; 74(14): 2679-2688, 2017 07.
Article in English | MEDLINE | ID: mdl-28271164

ABSTRACT

The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Gene Duplication , Mutation/genetics , Oncogenes , Tyrosine/metabolism , fms-Like Tyrosine Kinase 3/chemistry , fms-Like Tyrosine Kinase 3/metabolism , Animals , Apoptosis , Cell Line , Cell Proliferation , Down-Regulation , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Male , Mice, Inbred BALB C , Mutant Proteins/metabolism , Myeloid Cells/metabolism , Phosphorylation , Protein Stability , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proteolysis , Signal Transduction , Ubiquitination
20.
Oncotarget ; 8(7): 12194-12202, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28086240

ABSTRACT

The type III receptor tyrosine kinase FLT3 is one of the most commonly mutated oncogenes in acute myeloid leukemia (AML). Inhibition of mutated FLT3 in combination with chemotherapy has displayed promising results in clinical trials. However, one of the major obstacles in targeting FLT3 is the development of resistant disease due to secondary mutations in FLT3 that lead to relapse. FLT3 and its oncogenic mutants signal through associating proteins that activate downstream signaling. Thus, targeting proteins that interact with FLT3 and their downstream signaling cascades can be an alternative approach to treat FLT3-dependent AML. We used an SH2 domain array screen to identify novel FLT3 interacting proteins and identified ABL2 as a potent interacting partner of FLT3. To understand the role of ABL2 in FLT3-mediated biological and cellular events, we used the murine pro-B cell line Ba/F3 as a model system. Overexpression of ABL2 in Ba/F3 cells expressing an oncogenic mutant of FLT3 (FLT3-ITD) resulted in partial inhibition of FLT3-ITD-dependent cell proliferation and colony formation. ABL2 expression did not alter the kinase activity of FLT3, its ubiquitination or its stability. However, it partially blocked FLT3-induced AKT phosphorylation without affecting ERK1/2 and p38 activation. Taken together our data suggest that ABL2 acts as negative regulator of signaling downstream of FLT3.


Subject(s)
Cell Proliferation , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , fms-Like Tyrosine Kinase 3/metabolism , Animals , Blotting, Western , COS Cells , Cell Line , Mice , Mutation , Phosphorylation , Protein Binding , Protein-Tyrosine Kinases/genetics , Tandem Repeat Sequences/genetics , fms-Like Tyrosine Kinase 3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...