Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Environ Toxicol Pharmacol ; 108: 104462, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710242

ABSTRACT

Nanoparticles (NPs) have become an important part of everyday life, including their application in dentistry. Aside from their undoubted benefits, questions regarding their risk to human health, and/or genome have arisen. However, studies concerning cytogenetic effects are completely absent. A group of women acutely exposed to an aerosol released during dental nanocomposite grinding was sampled before and after the work. Exposure monitoring including nano (PM0.1) and respirable (PM4) fractions was performed. Whole-chromosome painting for autosomes #1, #4, and gonosome X was applied to estimate the pattern of cytogenetic damage including structural and numerical alterations. The results show stable genomic frequency of translocations (FG/100), in contrast to a significant 37.8% (p<0.05) increase of numerical aberrations caused by monosomies (p<0.05), but not trisomies. Monosomies were mostly observed for chromosome X. In conclusion, exposure to nanocomposites in stomatology may lead to an increase in numerical aberrations which can be dangerous for dividing cells.

2.
Environ Toxicol Pharmacol ; 104: 104316, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37981204

ABSTRACT

This study evaluated how exposure to the ubiquitous air pollution component, ultrafine particles (UFPs), alters the olfactory bulb (OB) transcriptome. The study utilised a whole-body inhalation chamber to simulate real-life conditions and focused on UFPs due to their high translocation and deposition ability in OBs as well as their prevalence in ambient air. Female C57BL/6J mice were exposed to clean air or to freshly generated combustion derived UFPs for two weeks, after which OBs were dissected and mRNA transcripts were investigated using RNA sequencing analysis. For the first time, transcriptomics was applied to determine changes in mRNA expression levels occurring after subacute exposure to UFPs in the OBs. We found forty-five newly described mRNAs to be involved in air pollution-induced responses, including genes involved in odorant binding, synaptic regulation, and myelination signalling pathway, providing new gene candidates for future research. This study provides new insights for the environmental science and neuroscience fields and nominates future research directions.


Subject(s)
Air Pollutants , Air Pollution , Mice , Animals , Female , Olfactory Bulb/chemistry , Olfactory Bulb/metabolism , Air Pollutants/toxicity , Air Pollutants/analysis , Transcriptome , Mice, Inbred C57BL , Air Pollution/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Gene Expression Profiling , Biomarkers/metabolism , RNA, Messenger/metabolism , Particle Size
3.
Toxics ; 11(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36977018

ABSTRACT

Some metal nanoparticles (NP) are characterized by antimicrobial properties with the potential to be used as alternative antibiotics. However, NP may negatively impact human organism, including mesenchymal stem cells (MSC), a cell population contributing to tissue growth and regeneration. To address these issues, we investigated the toxic effects of selected NP (Ag, ZnO, and CuO) in mouse MSC. MSC were treated with various doses of NP for 4 h, 24 h, and 48 h and multiple endpoints were analyzed. Reactive oxygen species were generated after 48 h CuO NP exposure. Lipid peroxidation was induced after 4 h and 24 h treatment, regardless of NP and/or tested dose. DNA fragmentation and oxidation induced by Ag NP showed dose responses for all the periods. For other NP, the effects were observed for shorter exposure times. The impact on the frequency of micronuclei was weak. All the tested NP increased the sensitivity of MSC to apoptosis. The cell cycle was most affected after 24 h, particularly for Ag NP treatment. In summary, the tested NP induced numerous adverse changes in MSC. These results should be taken into consideration when planning the use of NP in medical applications where MSC are involved.

4.
Stem Cell Rev Rep ; 19(5): 1360-1369, 2023 07.
Article in English | MEDLINE | ID: mdl-36810951

ABSTRACT

Negative impacts of nanomaterials on stem cells and cells of the immune system are one of the main causes of an impaired or slowed tissue healing. Therefore, we tested effects of four selected types of metal nanoparticles (NPs): zinc oxide (ZnO), copper oxide (CuO), silver (Ag), and titanium dioxide (TiO2) on the metabolic activity and secretory potential of mouse mesenchymal stem cells (MSCs), and on the ability of MSCs to stimulate production of cytokines and growth factors by macrophages. Individual types of nanoparticles differed in the ability to inhibit metabolic activity, and significantly decreased the production of cytokines and growth factors (interleukin-6, vascular endothelial growth factor, hepatocyte growth factor, insulin-like growth factor-1) by MSCs, with the strongest inhibitory effect of CuO NPs and the least effect of TiO2 NPs. The recent studies indicate that immunomodulatory and therapeutic effects of transplanted MSCs are mediated by macrophages engulfing apoptotic MSCs. We co-cultivated macrophages with heat-inactivated MSCs which were untreated or were preincubated with the highest nontoxic concentrations of metal NPs, and the secretory activity of macrophages was determined. Macrophages cultivated in the presence of both untreated MSCs or MSCs preincubated with NPs produced significantly enhanced and comparable levels of various cytokines and growth factors. These results suggest that metal nanoparticles inhibit therapeutic properties of MSCs by a direct negative effect on their secretory activity, but MSCs cultivated in the presence of metal NPs have preserved the ability to stimulate cytokine and growth factor production by macrophages.


Subject(s)
Mesenchymal Stem Cells , Metal Nanoparticles , Mice , Animals , Vascular Endothelial Growth Factor A/pharmacology , Cytokines
5.
Environ Pollut ; 323: 121290, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36804881

ABSTRACT

Air pollution is a dominant environmental exposure factor with significant health consequences. Unexpectedly, research in a heavily polluted region of the Czech Republic, with traditional heavy industry, revealed repeatedly the lowest frequency of micronuclei in the season with the highest concentrations of air pollutants including carcinogenic benzo[a]pyrene (B[a]P). Molecular findings have been collected for more than 10 years from various locations of the Czech Republic, with differing quality of ambient air. Preliminary conclusions have suggested adaptation of the population from the polluted locality (Ostrava, Moravian-Silesian Region (MSR)) to chronic air pollution exposure. In this study we utilize the previous findings and, for the first time, investigate micronuclei (MN) frequency by type: (i) centromere positive (CEN+) MN, representing chromosomal losses, and (ii) centromere negative (CEN-) MN representing chromosomal breaks. As previous results indicated differences between populations in the expression of XRCC5, a gene involved in the non-homologous end-joining (NHEJ) repair pathway, possible variations in epigenetic settings in this gene were also investigated. This new research was conducted in two seasons in the groups from two localities with different air quality levels (Ostrava (OS) and Prague (PG)). The obtained new results show significantly lower frequencies of chromosomal breaks in the OS subjects, related to the highest air pollution levels (p < 0.001). In contrast, chromosomal losses were comparable between both groups. In addition, significantly lower DNA methylation was found in 14.3% of the analyzed CpG loci of XRCC5 in the population from OS. In conclusion, the epigenetic adaptation (hypomethylation) in XRCC5 involved in the NHEJ repair pathway in the population from the polluted region, was suggested as a reason for the reduced level of chromosomal breaks. Further research is needed to explore the additional mechanisms, including genetic adaptation.


Subject(s)
Air Pollutants , Air Pollution , Humans , Chromosome Breakage , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure , Chromosome Aberrations , Epigenesis, Genetic , Czech Republic
6.
Toxicol In Vitro ; 87: 105536, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36528116

ABSTRACT

Nanoparticles (NPs) have a wide use in various field of industry and in medicine, where they represent a promise for their antimicrobial effects. Simultaneous application of NPs and therapeutic stem cells can speed up tissue regeneration and improve healing process but there is a danger of negative impacts of NPs on stem cells. Therefore, we tested effects of four types of metal antimicrobial NPs on characteristics and function properties of mouse mesenchymal stem cells (MSCs) in vitro. All types of tested NPs, i.e. zinc oxide, silver, copper oxide and titanium dioxide, exerted negative effects on the expression of phenotypic markers, metabolic activity, differentiation potential, expression of genes for immunoregulatory molecules and on production of cytokines and growth factors by MSCs. However, there were apparent differences in the impact of individual types of NPs on tested characteristics and function properties of MSCs. The results showed that individual types of NPs influence the activity of MSCs, and thus the use of metal NPs during tissue regeneration and in combination with stem cell therapy should be well considered.


Subject(s)
Anti-Infective Agents , Mesenchymal Stem Cells , Metal Nanoparticles , Nanoparticles , Mice , Animals , Metal Nanoparticles/toxicity , Cell Differentiation , Wound Healing
7.
J Xenobiot ; 14(1): 1-14, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38535490

ABSTRACT

Emissions from modern gasoline engines represent an environmental and health risk. In this study, we aimed to compare the toxicity of organic compound mixtures extracted from particulate matter (PM extracts) produced by neat gasoline (E0) and a blend containing 15% ethanol (E15), which is offered as an alternative to non-renewable fossil fuels. Human lung BEAS-2B cells were exposed to PM extracts, and biomarkers of genotoxicity, such as DNA damage evaluated by comet assay, micronuclei formation, levels of phosphorylated histone H2AX, the expression of genes relevant to the DNA damage response, and exposure to polycyclic aromatic hydrocarbons (PAHs), were determined. Results showed that both PM extracts significantly increased the level of oxidized DNA lesions. The E0 extract exhibited a more pronounced effect, possibly due to the higher content of nitrated PAHs. Other endpoints were not substantially affected by any of the PM extracts. Gene expression analysis revealed mild but coordinated induction of genes related to DNA damage response, and a strong induction of PAH-inducible genes, indicating activation of the aryl hydrocarbon receptor (AhR). Our data suggest that the addition of ethanol into the gasoline diminished the oxidative DNA damage, but no effect on other genotoxicity biomarkers was observed. Activated AhR may play an important role in the toxicity of gasoline PM emissions.

8.
Foods ; 11(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36496701

ABSTRACT

The maternal diet during pregnancy affects neonatal health status. The objective of this study was to assess the nutritional quality of the maternal diet, and its contamination by persistent organic pollutants (POPs), in pregnant women living in two areas of the Czech Republic with different levels of air pollution, and subsequently to assess the relationship of these two factors with birth weight and neonatal oxidative stress. To determine the level of oxidative stress, 8-isoprostane concentrations in umbilical cord plasma were measured. The overall nutritional quality of the maternal diet was not optimal. Of the nutritional factors, protein intake proved to be the most significant showing a positive relationship with birth weight, and a negative relationship with the oxidative stress of newborns. Dietary contamination by persistent organic pollutants was low and showed no statistically significant relationship with birth weight. Only one of the 67 analyzed POPs, namely the insecticide dichlorodiphenyltrichloroethane (DDT), showed a statistically significant positive relationship with the level of neonatal oxidative stress.

9.
Neuro Endocrinol Lett ; 43(1): 27-38, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35490423

ABSTRACT

BACKGROUND: To study the impact of oxidative damage associated with particulate matter< 2.5 µm (PM2.5) during prenatal period on the cognitive development in five years old children. METHODS: Two cohorts of children aged five years, born in the years 2013 and 2014, were studied for their cognitive development in the polluted district Karvina and the control district Ceske Budejovice. Exposure to PM2.5 in the ambient air was measured for each mother during the 3rd trimester of pregnancy. Oxidative damage was determined from the level of biomarkers at delivery in mothers´ and newborns´ urine as 8-oxo-7,8-dihydro-2´-deoxyguanosine (8-oxodG) and in plasma as 15-F2t-isoprostane levels (15-F2t-IsoP). The Bender Visual Motor Gestalt Test (BG test) and the Raven Colored Progressive Matrices (RCPM test) were used as psychological cognitive tests. RESULTS: Average concentrations of PM2.5 ± SD in the 3rd trimester of mothers´ pregnancies were 37.7 ± 14.7 µg/m3 and 17.1 ± 4.8 µg/m3 in Karvina and Ceske Budejovice, respectively (p < 0.001). The maternal level of 15-F2t-IsoP in plasma at the time of delivery was significantly associated with the results of the RCPM test (p < 0.05) and the BG test (p < 0.05) in five years old children. CONCLUSIONS: Lipid peroxidation in maternal plasma at the time of delivery has an adverse effect on the results of psychological cognitive tests in five years old children.


Subject(s)
Air Pollutants , 8-Hydroxy-2'-Deoxyguanosine , Air Pollutants/adverse effects , Child , Child, Preschool , Cognition , Female , Humans , Infant, Newborn , Oxidative Stress , Particulate Matter/adverse effects , Pregnancy , Vitamins
10.
Article in English | MEDLINE | ID: mdl-35329296

ABSTRACT

We aimed to identify the variables that modify levels of oxidatively damaged DNA and lipid peroxidation in subjects living in diverse localities of the Czech Republic (a rural area, a metropolitan locality, and an industrial region). The sampling of a total of 126 policemen was conducted twice in two sampling seasons. Personal characteristics, concentrations of particulate matter of aerodynamic diameter <2.5 µm and benzo[a]pyrene in the ambient air, activities of antioxidant mechanisms (superoxide dismutase, catalase, glutathione peroxidase, and antioxidant capacity), levels of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6), concentrations of persistent organic pollutants in blood plasma, and urinary levels of polycyclic aromatic hydrocarbon metabolites were investigated as parameters potentially affecting the markers of DNA oxidation (8-oxo-7,8-dihydro-2'-deoxyguanosine) and lipid peroxidation (15-F2t-isoprostane). The levels of oxidative stress markers mostly differed between the localities in the individual sampling seasons. Multivariate linear regression analysis revealed IL-6, a pro-inflammatory cytokine, as a factor with the most pronounced effects on oxidative stress parameters. The role of other variables, including environmental pollutants, was minor. In conclusion, our study showed that oxidative damage to macromolecules was affected by processes related to inflammation; however, we did not identify a specific environmental factor responsible for the pro-inflammatory response in the organism.


Subject(s)
Air Pollutants , Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Air Pollutants/toxicity , Antioxidants/analysis , Biomarkers , Czech Republic , DNA , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Humans , Interleukin-6 , Oxidative Stress , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity
11.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35163587

ABSTRACT

DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and it can serve as a useful biomarker of prior environmental exposure and future health outcomes. This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The main characterization of the localities, differing by major sources of air pollution, was defined by the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed by a genome-wide microarray method. No season-specific DNA methylation pattern was discovered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = -1.92, p = 8.30 × 10-4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions and biological processes of cell junctions and adhesion assembly. The study demonstrates that the differences in the type of air pollution between localities can affect a unique change in DNA methylation profiles across the human genome.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , DNA Methylation/drug effects , Environmental Exposure/adverse effects , Police , Adult , Czech Republic , Female , Genome-Wide Association Study , Humans , Male , Middle Aged
12.
Toxicol In Vitro ; 80: 105316, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35066112

ABSTRACT

Air pollution caused by road traffic has an unfavorable impact on the environment and also on human health. It has previously been shown, that complete gasoline emissions lead to toxic effects in cell models originating from human airways. Here we focused on extractable organic matter (EOM) from particulate matter, collected from gasoline emissions from fuels with different ethanol content. We performed cytotoxicity evaluation, quantification of mucin and extracellular reactive oxygen species (ROS) production, DNA breaks detection, and selected gene deregulation analysis, after one and five days of exposure of human bronchial epithelial model (BEAS-2B) and a 3D model of the human airway (MucilAir™). Our data suggest that the longer exposure had more pronounced effects on the parameters of cytotoxicity and mucin production, while the impacts on ROS generation and DNA integrity were limited. In both cell models the expression of CYP1A1 was induced, regardless of the exposure period or EOM tested. Several other genes, including FMO2, IL1A, or TNF, were deregulated depending on the exposure time. In conclusion, ethanol content in the fuels did not significantly impact the toxicity of EOM. Biological effects were mostly linked to xenobiotics metabolism and inflammatory response. BEAS-2B cells were more sensitive to the treatment.


Subject(s)
Air Pollutants/toxicity , Bronchi/cytology , Epithelial Cells/drug effects , Gasoline , Particulate Matter/toxicity , Vehicle Emissions/toxicity , Cell Line , Cytochrome P-450 CYP1A1/genetics , Epithelial Cells/metabolism , Gene Expression Regulation/drug effects , Histones/metabolism , Humans , Interleukin-1alpha/genetics , Oxygenases/genetics , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/genetics
13.
Article in English | MEDLINE | ID: mdl-34798934

ABSTRACT

Emissions from road traffic are among the major contributors to air pollution worldwide and represent a serious environmental health risk. Although traffic-related pollution has been most commonly associated with diesel engines, increasing evidence suggests that gasoline engines also produce a considerable amount of potentially hazardous particulate matter (PM). The primary objective of this study was to compare the intrinsic toxic properties of the organic components of PM, generated by a conventional gasoline engine fueled with neat gasoline (E0), or gasoline-ethanol blend (15 % ethanol, v/v, E15). Our results showed that while E15 has produced, compared to gasoline and per kg of fuel, comparable particle mass (µg PM/kg fuel) and slightly more particles by number, the organic extract from the particulate matter produced by E15 contained a larger amount of harmful polycyclic aromatic hydrocarbons (PAHs), as determined by the chemical analysis. To examine the toxicity, we monitored genome-wide gene expression changes in human lung BEAS-2B cells, exposed for 4 h and 24 h to a subtoxic dose of each PM extract. After 4 h exposure, numerous dysregulated genes and processes such as oxidative stress, lipid and steroid metabolism, PPARα signaling and immune response, were found to be common for both extract treatments. On the other hand, 24 h exposure resulted in more distinctive gene expression patterns. Although we identified several common modulated processes indicating the metabolism of PAHs and activation of aryl hydrocarbon receptor (AhR), E15 specifically dysregulated a variety of other genes and pathways related to cancer promotion and progression. Overall, our findings suggest that the ethanol addition to gasoline changed the intrinsic properties of PM emissions and increased the PAH content in PM organic extract, thus contributing to a more extensive toxic response particularly after 24 h exposure in BEAS-2B cells.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Vehicle Emissions , Air Pollutants/toxicity , Cell Line , Ethanol/toxicity , Gasoline/toxicity , Humans , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Vehicle Emissions/toxicity
14.
Toxicology ; 462: 152953, 2021 10.
Article in English | MEDLINE | ID: mdl-34537260

ABSTRACT

Outdoor air pollution is classified as carcinogenic to humans and exposure to it contributes to increased incidence of various diseases, including cardiovascular, neurological or pulmonary disorders. Vehicle engine emissions represent a significant part of outdoor air pollutants, particularly in large cities with high population density. Considering the potentially negative health impacts of engine emissions exposure, the application of reliable test systems allowing assessment of the biological effects of these pollutants is crucial. The exposure systems should use relevant, preferably multicellular, cell models that are treated with the complete engine exhaust (i.e. a realistic mixture of particles, chemical compounds bound to them and gaseous phase) at the air-liquid interface. The controlled delivery and characterization of chemical and/or particle composition of the exhaust should be possible. In this mini-review we report on such exposure systems that have been developed to date. We focus on a brief description and technical characterization of the systems, and discuss the biological parameters detected following exposure to a gasoline/diesel exhaust. Finally, we summarize and compare findings from the individual systems, including their advantages/limitations.


Subject(s)
Air Pollutants/toxicity , Environmental Exposure/adverse effects , Vehicle Emissions/toxicity , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Animals , Environmental Exposure/analysis , Environmental Monitoring/methods , Gasoline/analysis , Gasoline/toxicity , Humans , Vehicle Emissions/analysis
15.
Environ Pollut ; 291: 118140, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34555793

ABSTRACT

In this biomonitoring study, we evaluated the concentrations of 8 polychlorinated biphenyls (PCBs), 11 organochlorinated pesticides (OCPs), 33 brominated flame retardants (BFRs), 7 novel brominated and chlorinated flame retardants (novel FRs) and 30 per- and polyfluoroalkylated substances (PFAS) in human serum samples (n = 274). A total of 89 persistent organic pollutants (POPs) were measured in blood serum samples of city policemen living in three large cities and their adjacent areas (Ostrava, Prague, and Ceske Budejovice) in the Czech Republic. All samples were collected during the year 2019 in two sampling periods (spring and autumn). The identification/quantification of PCBs, OCPs, BFRs, novel FRs and PFAS was performed by means of gas chromatography coupled to (tandem) mass spectrometry (GC-MS/(MS)) and ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UHPLC-MS/MS). The most frequently detected pollutants were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS), 2,2',3,4,4',5'-hexachlorobiphenyl (CB 138), 2,2',4,4',5,5'-hexachlorobiphenyl (CB 153), 2,2',3,3',4,4',5-heptachlorobiphenyl (CB 170), 2,2',3,4,4',5,5'-heptachlorobiphenyl (CB 180), hexachlorobenzene (HCB), and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) quantified in 100% of serum samples. In the serum samples, the concentrations of determined POPs were in the range of 0.108-900 ng g-1 lipid weight (lw) for PCBs, 0.106-1016 ng g-1 lw for OCPs, <0.1-618 ng g-1 lw for FRs and <0.01-18.3 ng mL-1 for PFAS, respectively. Locality, sampling season, and age were significantly associated with several POP concentrations. One of the important conclusions was that within the spring sampling period, statistically significant higher concentrations of CB 170 and CB 180 were observed in the samples from Ostrava (industrial area) compared to Prague and Ceske Budejovice. Older policemen had higher concentrations of five PCBs and two OCPs in blood serum.


Subject(s)
Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Biological Monitoring , Cities , Czech Republic , Environmental Monitoring , Environmental Pollutants/analysis , Gas Chromatography-Mass Spectrometry , Humans , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Serum/chemistry , Tandem Mass Spectrometry
16.
Int J Mol Sci ; 22(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34360600

ABSTRACT

A DNA methylation pattern represents an original plan of the function settings of individual cells and tissues. The basic strategies of its development and changes during the human lifetime are known, but the details related to its modification over the years on an individual basis have not yet been studied. Moreover, current evidence shows that environmental exposure could generate changes in DNA methylation settings and, subsequently, the function of genes. In this study, we analyzed the effect of chronic exposure to nanoparticles (NP) in occupationally exposed workers repeatedly sampled in four consecutive years (2016-2019). A detailed methylation pattern analysis of 14 persons (10 exposed and 4 controls) was performed on an individual basis. A microarray-based approach using chips, allowing the assessment of more than 850 K CpG loci, was used. Individual DNA methylation patterns were compared by principal component analysis (PCA). The results show the shift in DNA methylation patterns in individual years in all the exposed and control subjects. The overall range of differences varied between the years in individual persons. The differences between the first and last year of examination (a three-year time period) seem to be consistently greater in the NP-exposed subjects in comparison with the controls. The selected 14 most differently methylated cg loci were relatively stable in the chronically exposed subjects. In summary, the specific type of long-term exposure can contribute to the fixing of relevant epigenetic changes related to a specific environment as, e.g., NP inhalation.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation/drug effects , Nanoparticles/adverse effects , Occupational Diseases/epidemiology , Occupational Exposure/adverse effects , Adult , Case-Control Studies , CpG Islands , Czech Republic/epidemiology , Female , Humans , Male , Middle Aged , Occupational Diseases/chemically induced , Occupational Diseases/genetics
17.
Nanomaterials (Basel) ; 11(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34443765

ABSTRACT

The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.

18.
Chemosphere ; 281: 130833, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34015653

ABSTRACT

Road traffic emissions consist of gaseous components, particles of various sizes, and chemical compounds that are bound to them. Exposure to vehicle emissions is implicated in the etiology of inflammatory respiratory disorders. We investigated the inflammation-related markers in human bronchial epithelial cells (BEAS-2B) and a 3D model of the human airways (MucilAir™), after exposure to complete emissions and extractable organic matter (EOM) from particles generated by ordinary gasoline (E5), and a gasoline-ethanol blend (E20; ethanol content 20% v/v). The production of 22 lipid oxidation products (derivatives of linoleic and arachidonic acid, AA) and 45 inflammatory molecules (cytokines, chemokines, growth factors) was assessed after days 1 and 5 of exposure, using LC-MS/MS and a multiplex immunoassay, respectively. The response observed in MucilAir™ exposed to E5 gasoline emissions, characterized by elevated levels of pro-inflammatory AA metabolites (prostaglandins) and inflammatory markers, was the most pronounced. E20 EOM exposure was associated with increased levels of AA metabolites with anti-inflammatory effects in this cell model. The exposure of BEAS-2B cells to complete emissions reduced lipid oxidation, while E20 EOM tended to increase concentrations of AA metabolite and chemokine production; the impacts on other inflammatory markers were limited. In summary, complete E5 emission exposure of MucilAir™ induces the processes associated with the pro-inflammatory response. This observation highlights the potential negative health impacts of ordinary gasoline, while the effects of alternative fuel are relatively weak.


Subject(s)
Air Pollutants , Gasoline , Air Pollutants/analysis , Chromatography, Liquid , Gasoline/analysis , Gasoline/toxicity , Humans , Inflammation/chemically induced , Lipids , Particulate Matter , Plant Extracts , Tandem Mass Spectrometry , Vehicle Emissions/analysis , Vehicle Emissions/toxicity
19.
Environ Health ; 20(1): 40, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33836759

ABSTRACT

BACKGROUND: Asthma represents a syndrome for which our understanding of the molecular processes underlying discrete sub-diseases (i.e., endotypes), beyond atopic asthma, is limited. The public health needs to characterize etiology-associated endotype risks is becoming urgent. In particular, the roles of polyaromatic hydrocarbon (PAH), globally distributed combustion by-products, toward the two known endotypes - T helper 2 cell high (Th2) or T helper 2 cell low (non-Th2) - warrants clarification. OBJECTIVES: To explain ambient B[a]P association with non-atopic asthma (i.e., a proxy of non-Th2 endotype) is markedly different from that with atopic asthma (i.e., a proxy for Th2-high endotype). METHODS: In a case-control study, we compare the non-atopic as well as atopic asthmatic boys and girls against their respective controls in terms of the ambient Benzo[a]pyrene concentration nearest to their home, plasma 15-Ft2-isoprostane (15-Ft2-isoP), urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), and lung function deficit. We repeated the analysis for i) dichotomous asthma outcome and ii) multinomial asthma-overweight/obese (OV/OB) combined outcomes. RESULTS: The non-atopic asthma cases are associated with a significantly higher median B[a]P (11.16 ng/m3) compared to that in the non-atopic controls (3.83 ng/m3; P-value < 0.001). In asthma-OV/OB stratified analysis, the non-atopic girls with lean and OV/OB asthma are associated with a step-wisely elevated B[a]P (median,11.16 and 18.00 ng/m3, respectively), compared to the non-atopic lean control girls (median, 4.28 ng/m3, P-value < 0.001). In contrast, atopic asthmatic children (2.73 ng/m3) are not associated with a significantly elevated median B[a]P, compared to the atopic control children (2.60 ng/m3; P-value > 0.05). Based on the logistic regression model, on ln-unit increate in B[a]P is associated with 4.7-times greater odds (95% CI, 1.9-11.5, P = 0.001) of asthma among the non-atopic boys. The same unit increase in B[a]P is associated with 44.8-times greater odds (95% CI, 4.7-428.2, P = 0.001) among the non-atopic girls after adjusting for urinary Cotinine, lung function deficit, 15-Ft2-isoP, and 8-oxodG. CONCLUSIONS: Ambient B[a]P is robustly associated with non-atopic asthma, while it has no clear associations with atopic asthma among lean children. Furthermore, lung function deficit, 15-Ft2-isoP, and 8-oxodG are associated with profound alteration of B[a]P-asthma associations among the non-atopic children.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/urine , Air Pollutants/analysis , Asthma/epidemiology , Benzo(a)pyrene/analysis , Dinoprost/analogs & derivatives , Adolescent , Asthma/blood , Asthma/physiopathology , Asthma/urine , Case-Control Studies , Child , Child, Preschool , Cotinine/urine , Czech Republic/epidemiology , Dinoprost/blood , Environmental Exposure/analysis , Female , Humans , Infant , Lung/physiopathology , Male , Phenotype
20.
Redox Biol ; 42: 101872, 2021 06.
Article in English | MEDLINE | ID: mdl-33579665

ABSTRACT

Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2'-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2'-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 µL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease.


Subject(s)
Nucleic Acids , 8-Hydroxy-2'-Deoxyguanosine , Biomarkers , Chromatography, Liquid , DNA Damage , Deoxyguanosine , Humans , Oxidative Stress , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...