Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 42(8): 613-624, 2023 02.
Article in English | MEDLINE | ID: mdl-36564470

ABSTRACT

The essential roles of proliferating cell nuclear antigen (PCNA) as a scaffold protein in DNA replication and repair are well established, while its cytosolic roles are less explored. Two metabolic enzymes, alpha-enolase (ENO1) and 6-phosphogluconate dehydrogenase (6PGD), both contain PCNA interacting motifs. Mutation of the PCNA interacting motif APIM in ENO1 (F423A) impaired its binding to PCNA and resulted in reduced cellular levels of ENO1 protein, reduced growth rate, reduced glucose consumption, and reduced activation of AKT. Metabolome and signalome analysis reveal large consequences of impairing the direct interaction between PCNA and ENO1. Metabolites above ENO1 in glycolysis accumulated while lower glycolytic and TCA cycle metabolite pools decreased in the APIM-mutated cells; however, their overall energetic status were similar to parental cells. Treating haematological cancer cells or activated primary monocytes with a PCNA targeting peptide drug containing APIM (ATX-101) also lead to a metabolic shift characterized by reduced glycolytic rate. In addition, we show that ATX-101 treatments reduced the ENO1 - PCNA interaction, the ENO1, GAPDH and 6PGD protein levels, as well as the 6PGD activity. Here we report for the first time that PCNA acts as a scaffold for metabolic enzymes, and thereby act as a direct regulator of primary metabolism.


Subject(s)
Proliferating Cell Nuclear Antigen , Humans , Deoxycholic Acid , DNA Replication , Mutation , Peptides/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism
2.
FASEB J ; 35(3): e21344, 2021 03.
Article in English | MEDLINE | ID: mdl-33566385

ABSTRACT

Cancer cells often depend on microenvironment signals from molecules such as cytokines for proliferation and metabolic adaptations. PRL-3, a cytokine-induced oncogenic phosphatase, is highly expressed in multiple myeloma cells and associated with poor outcome in this cancer. We studied whether PRL-3 influences metabolism. Cells transduced to express PRL-3 had higher aerobic glycolytic rate, oxidative phosphorylation, and ATP production than the control cells. PRL-3 promoted glucose uptake and lactate excretion, enhanced the levels of proteins regulating glycolysis and enzymes in the serine/glycine synthesis pathway, a side branch of glycolysis. Moreover, mRNAs for these proteins correlated with PRL-3 expression in primary patient myeloma cells. Glycine decarboxylase (GLDC) was the most significantly induced metabolism gene. Forced GLDC downregulation partly counteracted PRL-3-induced aerobic glycolysis, indicating GLDC involvement in a PRL-3-driven Warburg effect. AMPK, HIF-1α, and c-Myc, important metabolic regulators in cancer cells, were not mediators of PRL-3's metabolic effects. A phosphatase-dead PRL-3 mutant, C104S, promoted many of the metabolic changes induced by wild-type PRL-3, arguing that important metabolic effects of PRL-3 are independent of its phosphatase activity. Through this study, PRL-3 emerges as one of the key mediators of metabolic adaptations in multiple myeloma.


Subject(s)
Multiple Myeloma/metabolism , Neoplasm Proteins/physiology , Protein Tyrosine Phosphatases/physiology , Adenosine Triphosphate/biosynthesis , Cell Line, Tumor , Cell Proliferation , Glycine/metabolism , Glycine Dehydrogenase (Decarboxylating)/physiology , Glycolysis , Humans , Serine/metabolism
3.
Nat Commun ; 11(1): 5938, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230096

ABSTRACT

Recurrent somatic mutations in ETNK1 (Ethanolamine-Kinase-1) were identified in several myeloid malignancies and are responsible for a reduced enzymatic activity. Here, we demonstrate in primary leukemic cells and in cell lines that mutated ETNK1 causes a significant increase in mitochondrial activity, ROS production, and Histone H2AX phosphorylation, ultimately driving the increased accumulation of new mutations. We also show that phosphoethanolamine, the metabolic product of ETNK1, negatively controls mitochondrial activity through a direct competition with succinate at mitochondrial complex II. Hence, reduced intracellular phosphoethanolamine causes mitochondria hyperactivation, ROS production, and DNA damage. Treatment with phosphoethanolamine is able to counteract complex II hyperactivation and to restore a normal phenotype.


Subject(s)
Ethanolamines/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Cell Line , Cell Respiration/drug effects , Cell Respiration/genetics , DNA Breaks/drug effects , Electron Transport Complex II/drug effects , Electron Transport Complex II/metabolism , Ethanolamines/metabolism , Humans , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Mitochondria/genetics , Mitochondria/pathology , Mutation , Phenotype , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Reactive Oxygen Species/metabolism , Succinic Acid/metabolism , Tigecycline/pharmacology
4.
Article in English | MEDLINE | ID: mdl-32222674

ABSTRACT

The pyridine nucleotides nicotineamide adenine dinucleotide (NAD) and nicotineamide adenine dinucleotide phosphate (NADP) are conserved coenzymes across all domains of life, and are involved in more than 200 different hydride transfer reactions supporting essential catabolic and anabolic functions. The intracellular levels of these metabolites, and the ratio of their oxidized to reduced forms regulate an extensive network of reactions ranging beyond metabolism. Hence, monitoring their intracellular levels provides information about, but not limited to, the metabolic state of a cell or tissue. Interconversion between oxidized and reduced forms, varying pH liability and varying intracellular concentrations of the different species leaves absolute quantification of the pyridine nucleotides analytically challenging. These polar metabolites are poorly retained on conventional reverseed-phase stationary phases without ion-pair reagents that contaminates the LC-system. Herein we demonstrate that zwitterionic HILIC-tandem mass spectroemtry can be applied to successfully resolve the pyridine nucleotides in biological extracts in a fast, robust and highly sensitive way. The presented method applies isotope dilution to compensate potential loss of these labile metabolites and is validated for low, medium and high biomass samples of two popular biological model systems; Escherichia coli and the human cell line JJN-3. High stability and rapid sample preparation without solvent removal allows for long sequence runs, making this method ideal for high-throughput analysis of biological extracts.


Subject(s)
Isotopes/analysis , Nucleotides/analysis , Plant Extracts/analysis , Pyridines/analysis , Adenine Nucleotides/chemistry , Cell Line , Chromatography, High Pressure Liquid , Escherichia coli , Humans , Limit of Detection , NAD/metabolism , Oxidation-Reduction , Reproducibility of Results , Tandem Mass Spectrometry
5.
Metabolites ; 10(2)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32093075

ABSTRACT

Absolute quantification of intracellular metabolite pools is a prerequisite for modeling and in-depth biological interpretation of metabolomics data. It is the final step of an elaborate metabolomics workflow, with challenges associated with all steps-from sampling to quantifying the physicochemically diverse metabolite pool. Chromatographic separation combined with mass spectrometric (MS) detection is the superior platform for high coverage, selective, and sensitive detection of metabolites. Herein, we apply our quantitative MS-metabolomics workflow to measure and present the central carbon metabolome of a panel of commonly applied biological model systems. The workflow includes three chromatographic methods combined with isotope dilution tandem mass spectrometry to allow for absolute quantification of 68 metabolites of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and the amino acid and (deoxy) nucleoside pools. The biological model systems; Bacillus subtilis, Saccharomyces cerevisiae, two microalgal species, and four human cell lines were all cultured in commonly applied culture media and sampled in exponential growth phase. Both literature and databases are scarce with comprehensive metabolite datasets, and existing entries range over several orders of magnitude. The workflow and metabolite panel presented herein can be employed to expand the list of reference metabolomes, as encouraged by the metabolomics community, in a continued effort to develop and refine high-quality quantitative metabolomics workflows.

6.
Oncotarget ; 9(65): 32448-32465, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30197755

ABSTRACT

Low response rate and rapid development of resistance against commonly used chemotherapeutic regimes demand new multi-targeting anti-cancer strategies. In this study, we target the stress-related roles of the scaffold protein PCNA with a cell-penetrating peptide containing the PCNA-interacting motif APIM. The APIM-peptide increased the efficacy of cisplatin-based therapies in a muscle-invasive bladder cancer (MIBC) solid tumor model in rat and in bladder cancer (BC) cell lines. By combining multiple omics-levels, from gene expression to proteome/kinome and metabolome, we revealed a unique downregulation of the EGFR/ERBB2 and PI3K/Akt/mTOR pathways in the APIM-peptide-cisplatin combination treated cells. Additionally, the combination treatment reduced the expression of anti-apoptotic proteins and proteins involved in development of resistance to cisplatin. Concurrently, we observed increased levels of DNA breaks in combination treated cells, suggesting that the APIM-peptide impaired PCNA - DNA repair protein interactions and reduced the efficacy of repair. This was also seen in cisplatin-resistant cells, which notably was re-sensitized to cisplatin by the APIM-peptide. Our data indicate that the increased efficacy of cisplatin treatment is mediated both via downregulation of known oncogenic signaling pathways and inhibition of DNA repair/translesion synthesis (TLS), thus the APIM-peptide hits both nuclear and cytosolic functions of PCNA. The novel multi-targeting strategy of the APIM-peptide could potentially improve the efficacy of chemotherapeutic regiments for treatment of MIBC, and likely other solid tumors.

7.
Nutrients ; 10(4)2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29621132

ABSTRACT

The use of garlic and garlic-based extracts has been linked to decreased incidence of cancer in epidemiological studies. Here we examine the molecular and cellular activities of a simple homemade ethanol-based garlic extract (GE). We show that GE inhibits growth of several different cancer cells in vitro, as well as cancer growth in vivo in a syngeneic orthotopic breast cancer model. Multiple myeloma cells were found to be especially sensitive to GE. The GE was fractionated using solid-phase extractions, and we identified allicin in one GE fraction; however, growth inhibitory activities were found in several additional fractions. These activities were lost during freeze or vacuum drying, suggesting that the main anti-cancer compounds in GE are volatile. The anti-cancer activity was stable for more than six months in −20 °C. We found that GE enhanced the activities of chemotherapeutics, as well as MAPK and PI3K inhibitors. Furthermore, GE affected hundreds of proteins involved in cellular signalling, including changes in vital cell signalling cascades regulating proliferation, apoptosis, and the cellular redox balance. Our data indicate that the reduced proliferation of the cancer cells treated by GE is at least partly mediated by increased endoplasmic reticulum (ER) stress.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Endoplasmic Reticulum Stress/drug effects , Plant Extracts/pharmacology , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Stability , Female , Garlic/chemistry , Humans , Male , Mice, Inbred BALB C , Mice, Inbred C3H , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Oxidation-Reduction , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Plant Roots , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction/drug effects , Time Factors , Tumor Burden/drug effects
8.
Article in English | MEDLINE | ID: mdl-29571119

ABSTRACT

The phosphometabolome is comprised of all phosphorylated metabolites including the major metabolite classes sugar phosphates and nucleoside phosphates. Phosphometabolites are invaluable in any cell as a part of primary- and energy- metabolism, and as building blocks in the biosynthesis of macromolecules. Here, we report quantitative profiling of the phosphometabolome by applying capillary ion chromatography-tandem mass spectrometry (capIC-MS/MS), ensuring improved chromatographic separation, robustness and quantitative precision. Baseline separation was achieved for six out of eight tested hexose phosphates. Quantitative precision and reproducibility was improved by introducing a fully uniformly (U) 13C-labeled biological extract and applying an isotope dilution (ID) correction strategy. A 13C-labeled biological extract does in principle contain internal standards (IS) for all metabolites, but low abundant metabolites pose a challenge, and solutions to this are discussed. The extreme reproducibility and reliability of this capIC-MS/MS method was demonstrated by running the instrumentation continuously for ten days.


Subject(s)
Chromatography, Liquid/methods , Metabolome/physiology , Metabolomics/methods , Sugar Phosphates/analysis , Sugar Phosphates/metabolism , Tandem Mass Spectrometry/methods , Isotope Labeling , Metabolic Networks and Pathways/physiology , Phosphorylation , Sugar Phosphates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...