Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(21): 15681-15692, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38766760

ABSTRACT

This study employs femtosecond transient absorption spectroscopy to investigate the rapid dynamics of excited state carriers in three metalated porphyrin-naphthalimide (PN) molecules and one free-base molecule. The dynamics of electron injection, from PN to mesoporous titania (TiO2), in PN adsorbed TiO2 films (Ti-PN), were carefully investigated and compared to PN adsorbed ZrO2 films (Zr-PN). In addition, we examined the self-assembled PN films and found that, in their self-assembled state, these molecules exhibited a longer relaxation time than Zr-PN monomeric films, where the charge injection channel was insignificant. The ground-state bleach band in the Ti-PN films gradually shifted to longer wavelengths, indicating the occurrence of the Stark effect. Faster electron injection was observed for the metalated PN systems and the electron injection times from the various excited states to the conduction band of TiO2 (CB-TiO2) were obtained from the target model analysis of the transient absorption spectra data matrix. In these metal-organic complexes, hot electron injection from PN to CB-TiO2 occurred on a time scale of <360 fs. Importantly, Cu(II)-based PN complexes exhibited faster injection and longer recombination times. The injection times have been estimated to result from a locally excited state at ≈280 fs, a hot singlet excited state at 4.95 ps, and a vibrationally relaxed singlet excited state at 97.88 ps. The critical photophysical and charge injection processes seen here provide the potential for exploring the underlying factors involved and how they correlate with photocatalytic performance.

2.
Opt Lett ; 48(13): 3519-3522, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37390170

ABSTRACT

Lead-free halide double perovskite nanocrystals (DPNCs) are emerging materials, recently explored as potential candidates in light-emitting, photovoltaic, and other optoelectronic applications. This Letter reveals unusual photophysical phenomena and nonlinear optical (NLO) properties of Mn-doped Cs2AgInCl6 nanocrystals (NCs) via temperature-dependent photoluminescence (PL) and femtosecond Z-scan measurements. The PL emission measurements suggest that self-trapped excitons (STEs) are present, and more than one STE state is possible for this doped double perovskite. We observed enhanced NLO coefficients, owing to the improved crystallinity arising from the Mn doping. From the closed aperture Z-scan data, we have calculated two fundamental parameters, Kane energy (29 eV) and exciton reduced mass (0.22m0). We further obtained the optical limiting onset (1.84 mJ/cm2) and figure of merit as a proof-of-concept application to demonstrate the potential in optical limiting and optical switching applications. Highlighting the self-trapped excitonic emission and NLO applications, the multifunctionality of this material system is demonstrated. This investigation provides an avenue to design novel photonic and nonlinear optoelectronic devices.


Subject(s)
Nanoparticles , Oxides , Photons , Temperature
3.
Nanoscale ; 15(21): 9372-9389, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37165674

ABSTRACT

Cs2AgInCl6 double perovskite (DP) nanocrystals (NCs) are an emerging class of materials with promising application potential in photonics/optoelectronics owing to their nontoxicity, direct bandgap, and high thermal and moisture stability. These NCs are, however, rarely explored for nonlinear optical (NLO) applications. Herein, we present a comprehensive investigation of the photophysical and nonlinear optical properties of erbium- (Er) and ytterbium (Yb)-doped Cs2AgInCl6 nanocrystals (denoted as Er-DP and Yb-DP, respectively). Temperature-dependent photoluminescence of these NCs was analyzed to estimate their exciton binding energy, Huang-Rhys parameter (S), and electron-phonon coupling strength, which are of fundamental interest to gain an in-depth understanding of the material systems. Femtosecond Z-scan experiments with 800 nm excitation revealed the reverse saturable absorption (RSA) behavior owing to three-photon absorption (3PA). The obtained values of the 3PA coefficients were 1.35 × 10-4 and 1.64 × 10-4 cm3 GW-2, respectively, and the nonlinear refractive indices were estimated to be 1.02 × 10-15 and 1.15 × 10-15 cm2 W-1, respectively, for Er-DP and Yb-DP. These values are superior to those obtained in undoped Cs2AgInCl6 NCs. The physical parameter, Kane energy, which is closely related to the magnitude of the oscillator strength, was estimated to be 25 eV and 26 eV for Er-DP and Yb-DP, respectively. As a proof-of-concept application, we further obtained the optical limiting onset and figure of merit to reveal their prospect as an optical limiter and in photonic switching application. With such emission and nonlinear optical properties, we anticipate that lanthanide-doped Cs2AgInCl6 NCs can be used for designing eco-friendly nonlinear optoelectronic/photonic devices.

4.
Biomater Sci ; 11(11): 3938-3951, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37093244

ABSTRACT

With the increasing dependence on fluorescence bioimaging, luminogens with aggregation-induced emission (AIE) properties have gained significant attention due to their excellent photostabilization, minimal photobleaching, high reliability, and superior biocompatibility. Since mitochondria are crucial subcellular organelles in eukaryotic cells with important biological functions, organelle-specific AIE emitters with distinct functions have been highly sought after, but with limited success using simple synthetic methods. Here, we describe a strategy for synthesizing two triphenylamine (TPA) based acrylonitriles, tethered to different donor groups, TPA and phenothiazine (PTZ), respectively, with superior AIE properties using Suzuki coupling. We conducted a systematic and detailed experimental analysis of the structural characteristics of both AIE luminogens, which exhibited excellent photostability, a large Stokes shift, and bright solid-state emission. A cell viability study carried out with F1 and F2 dyes revealed that both luminogens exhibited excellent biocompatibility. Based on fluorescence experiments, F2 displayed excellent AIE characteristics, permeability, biocompatibility, and photostability compared to rhodamine 123, allowing it to selectively stain and track mitochondria in cancer cells over an extended period of time. The Pearson correlation coefficient of F2 and rhodamine 123 was estimated to have an r-value of 0.99. Our findings are expected to provide insight into the synthesis of an extensive archive of AIE-based acrylonitriles with fascinating properties for mitochondrial staining.


Subject(s)
Fluorescent Dyes , Mitochondria , Humans , Rhodamine 123 , Reproducibility of Results , Fluorescent Dyes/chemistry , HeLa Cells
5.
Inorg Chem ; 61(13): 5363-5372, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35319883

ABSTRACT

Zero-dimensional (0D) metal halide hybrids with high exciton binding energy are excellent materials for lighting applications. Controlling/modulating the structure of the constituent metal halide units allows tunability of their photoluminescence properties. 0D manganese halide hybrids are currently attracting research efforts in lighting applications due to their eco-friendly and strong emission. However, structural transformation-induced tunability of their photophysical properties has rarely been reported. Herein, we demonstrate a rational synthetic strategy to modulate the structure and luminescence properties of 0D Mn(II) halide hybrids utilizing the structure-directing d10 metal ions (Cd2+/Zn2+). 0D metal halide hybrids of Cd2+/Zn2+, which act as hosts with tunable structures, accept Mn2+ ions as substitutional dopants. This structural flexibility of the host d10 metal ions is realized by optimizing the metal-to-ligand ratio (Cd/AEPip). This reaction parameter allows structural transformation from an octahedral (AEPipCdMnBrOh) to a tetrahedral (AEPipCdMnBrTd) 0D Mn halide hybrid with tunable luminescence (orange → green) with high photoluminescence quantum yield. Interestingly, when Zn2+ is utilized, a tetrahedral AEPipZnMnBr structure forms exclusively with strong green emission. Optical and single-crystal X-ray diffraction structural analysis of the host and the doped system supports our experimental data and confirms the structure-directing role played by Cd2+/Zn2+ centers. This work demonstrates a rational strategy to modulate the structure/luminescence properties of 0D Mn(II) halide hybrids, which can further be implemented for other 0D metal halide hybrids.

6.
Nanoscale Adv ; 2(12): 5591-5599, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-36133886

ABSTRACT

A wide range of technologies has been developed for producing hydrogen economically and in greener ways. Photoelectrochemical water splitting using photoelectrodes submerged in a bath electrolyte forms a major route of hydrogen evolution. The efficacy of water splitting is improved by sensitizing metal oxide photoelectrodes with narrow bandgap semiconductors that efficiently absorb sunlight and generate and transport charge carriers. Here we show that the efficiencies of photocurrent generation and photoelectrochemical hydrogen evolution by the binary TiO2/Sb2S3 anode increase by an order of magnitude upon the incorporation of the earth-abundant plasmonic bismuth nanoparticles into it. The ternary electrode TiO2/Bi nanoparticle/Sb2S3 illuminated with sunlight provides us with a photocurrent density as high as 4.21 mA cm-2 at 1.23 V, which is fourfold greater than that of the binary electrode and tenfold greater than that of pristine TiO2. By using bismuth nanoparticles, we estimate the incident photon to current conversion efficiency at 31% and solar power conversion efficiency at 3.85%. Here the overall impact of bismuth nanoparticles is attributed to increases in the open-circuit voltage (860 mV), which is by expediting the transfer of photogenerated electrons from Sb2S3 nanoparticles to the TiO2 electrode, and short-circuit current (9.54 mA cm-2), which is by the plasmonic nearfield effect. By combining the cost-effective plasmonic bismuth nanoparticles with the narrow bandgap Sb2S3 on the TiO2 electrode, we develop a stable, ternary photoanode and accomplish high-efficiency photocurrent generation and hydrogen evolution.

7.
ACS Appl Mater Interfaces ; 11(20): 18395-18403, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31045337

ABSTRACT

Forster resonance energy-transfer (FRET)-based solution-processed solar cell is fabricated with cadmium sulfide (CdS) as the energy donor and poly[ N-9'-heptadecanyl-2,7-carbazole- alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) as the energy acceptor. Carbon dots (C-dots) deposited on carbon fabric are applied as a counter electrode. Although electron injection from CdS to PCDTBT is energetically disfavored, evidences for energy transfer between the two components of the cell are obtained in terms of FRET parameters with the relative quantum yield of donor CdS quantum dots (QDs) being ∼0.3, a Forster radius of ∼3.7 nm, and an energy-transfer efficiency of ∼55%. Power conversion efficiency (PCE) of the TiO2/PCDTBT cell without the donor is 0.23% and when coupled with donor CdS QDs, the ensuing TiO2/PCDTBT/CdS cell experiences a 23 time increment in PCE, reaching 5.3%. The complete FRET cell: TiO2/PCDTBT/CdS/ZnS-S2--C-dots/C-fabric produces a PCE of 7.42%, under 1 sun illumination. External quantum efficiency studies reveal an enhanced spectral response spanning from 300 to 670 nm, with 300 and 175% increases attained for the FRET-enabled TiO2/PCDTBT/CdS/ZnS photoanode compared with the TiO2/PCDTBT photoanode over the blue and green-red portions of the solar spectrum.

8.
RSC Adv ; 9(63): 36726-36741, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-35539038

ABSTRACT

A novel zinc phthalocyanine derivative [2(3), 9(10), 16(17), 23(24) tetrakis-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)ethynyl)phthalocyanine zinc(ii) (PBIPC)] was synthesized by incorporating a triphenyl imidazole moiety at its peripheral positions. The detailed mechanisms of absorption, emission, electrochemical, nonlinear optical (NLO) and photophysical (excited state dynamics) properties of PBIPC were explored. The absorption and emission properties of the compound were studied in different solvents. The incorporation of a triphenyl imidazole moiety at the peripheral position of the zinc phthalocyanine slightly broadened the Soret band. The emission studies revealed fluorescence quantum yields to be in the range of 0.11-0.22. The time-resolved fluorescence data established the radiative lifetimes to be in the nanosecond range. The oxidation and reduction processes were found to be ring centered, which were studied using the cyclic voltammetry (CV) technique. The energy optimized structures and HOMO-LUMO levels were calculated using DFT, TD-DFT analysis and were employed by means of hybrid functional theory (B3LYP) at 6-31G (d,p) basis set in the Gaussian 09 package. Two-photon absorption was observed in the NLO studies performed in the visible wavelength range of 600-800 nm while the nonlinear absorption was dominated by three- and four-photon absorption processes in the NIR wavelength range (1.0-1.5 µm). The molecule exhibited self-focusing behavior for all the wavelengths. Finally, the excited state dynamics of the title molecule PBIPC were investigated using femtosecond transient absorption spectroscopy and the results obtained were understood on the basis of a simple three kinetic model, for excitation wavelengths of 400 nm (Soret band) and 650 nm (Q-band). Both the spectra demonstrated a broad positive transient absorption (TA) data which overlapped with the ground state bleach (GSB), which in turn displayed a red shift over a delay of ∼2 ns. The lifetimes revealed a possibility of intersystem crossing (τ > 1 ns) owing to the triplet state transition.

9.
RSC Adv ; 8(28): 15282-15289, 2018 Apr 23.
Article in English | MEDLINE | ID: mdl-35539470

ABSTRACT

Herein, we present comprehensive investigations of the optical and electrical properties of Nd3+ substitution in sodium bismuth titanate ceramics (NBNT) with varying Nd3+ concentration. The room temperature photoluminescence (PL) emission for both unpoled and poled samples is observed to be a maximum for an Nd3+ substitution of 1 mol%. Upon poling, the PL intensity is observed to be quenched, consistent with the obtained XRD data, indicating an electric-field induced structural ordering towards higher symmetry, confirmed with the help of structural refinement. The evaluated ferroelectric to relaxor and antiferroelectric relaxor T (F-R) was observed clearly from the poled dielectric-loss curve for the 1 mol% of Nd3+ substitution. Furthermore, the optimized NBNT exhibited a lower E c and a higher off-resonance figure of merit (FOMoff) for energy harvesting by 12% and 30%, respectively, in comparison with un-doped NBT.

10.
J Phys Chem C Nanomater Interfaces ; 119(52): 28691-28700, 2015.
Article in English | MEDLINE | ID: mdl-26631153

ABSTRACT

We present a comprehensive photophysical investigation on a series of three corroles (TTC, P-TTC, Ge-TTC dissolved in toluene), employing femtosecond and nanosecond transient absorption spectroscopy (TAS) measurements. Systematic analyses of the TAS data determined the rates and corresponding time constants of photophysical processes: internal conversion (τIC) in the 898-525 fs range, vibrational relaxation (τ_VR) in the 7.44-13.6 ps range, intersystem crossing (τISC ) in the 033-1.09 ns range and triplet lifetime (τ_triplet) in the 0.8-3.5µs range. The estimated triplet quantum yields (ΦTriplet) were in the 0.42 - 0.61 range. Comparatively, GeTTC displayed faster τIC and higher(ΦTriplet). Additionally, the time-dependent density functional theory (DFT) calculations were performed for the three molecules. The HOMO/LUMO energy levels and the oscillator strengths of various transitions were determined and presented.

11.
Sci Rep ; 3: 2073, 2013.
Article in English | MEDLINE | ID: mdl-23797845

ABSTRACT

It is common knowledge that poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend, a prototype system for bulk heterojunction (BHJ) solar cells, consists of a network of tens of nanometers-large donor-rich and acceptor-rich phases separated by extended finely intermixed border regions where PCBM diffuse into P3HT. Here we specifically address the photo-induced dynamics in a 10 nm thin P3HT/PCBM blend that consists of the intermixed region only. Using the multi-pass transient absorption technique (TrAMP) that enables us to perform ultra high sensitive measurements, we find that the primary process upon photoexcitation is ultrafast energy transfer from P3HT to PCBM. The expected charge separation due to hole transfer from PCBM to P3HT occurs in the 100 ps timescale. The derived picture is much different from the accepted view of ultra-fast electron transfer at the polymer/PCBM interface and provides new directions for the development of efficient devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...