Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 274(Pt 1): 133318, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917917

ABSTRACT

The presence of tetracycline and dye as organic contaminants has led to the poisoning of wastewater. The aim of this study is to synthesize a novel biocomposite material by decorating natural starch polymer granules with metal-organic framework (MIL100) and cobalt ferrite magnetic (CoFe2O4) nanoparticles. The synthesized ternary magnetic biocomposite (Starch/MIL100/CoFe2O4) was used for the photocatalytic degradation of methylene blue (MB) and tetracycline (TCN) using LED visible light. The synthesis of the biocomposite was confirmed through comprehensive analyses (XRD, SEM, FTIR, BET, EDX, MAP, DRS, pHzpc, TGA, and Raman). The evaluation examined the influence of initial pollutant concentration, catalyst dosage, pH, and the impact of anions on pollutant removal. The results show that the pollutant degradation ability of biocomposite has been significantly improved, so that the base biopolymer, starch, achieved 18% tetracycline degradation, but when decorated with MIL100 and cobalt ferrite, it increased to 91.2%. It was observed that the degradation for methylene blue improved from 12% for starch to 96.6% for the magnetic biocomposite. The tetracycline degradation decreased by more than 20% in the presence of NaCl, NaNO3, and Na2SO4. The finding shows that the biocomposite adheres to first-order kinetics for both pollutants. The scavengers test identified hydroxyl radicals as the most effective active species in the degradation process. High stability, even after passing 5 cycles of recycling was observed for the biocomposite. The results indicated that the facile and green synthesized Starch/MIL100/CoFe2O4 magnetic biocomposite could be used as an effective photocatalyst for the degradation of Tetracycline and dye at room temperature.


Subject(s)
Cobalt , Ferric Compounds , Starch , Tetracycline , Water Pollutants, Chemical , Starch/chemistry , Cobalt/chemistry , Tetracycline/chemistry , Catalysis , Ferric Compounds/chemistry , Water Pollutants, Chemical/chemistry , Coloring Agents/chemistry , Methylene Blue/chemistry , Green Chemistry Technology/methods , Metal-Organic Frameworks/chemistry , Photolysis
2.
Int J Biol Macromol ; 182: 524-533, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33848549

ABSTRACT

A novel composite has been fabricated by using MOF and chitin as a natural and biocompatible compound. To this purpose, MOF was synthesized by using 2-aminoterephthalic acid and iron (III) chloride hexahydrate and then reacted with Cl-functionalized chitin. The resulting composite was characterized and utilized as a catalyst for degradation of methylene blue both in dark condition and under visible light irradiation. The results indicated superior catalytic activity under visible light irradiation. Furthermore, study of the reaction variables, including basicity, dye concentration and catalyst loading showed that the highest catalytic activity was achieved at basic condition. It was also found that both initial dye concentration and catalyst loading can affect the catalytic activity. To disclose the merits of the composite compared to its individual components, kinetic studies of the photo-degradation process in the presence of the composite, chitin and MOF have been performed. The results confirmed superior activity the composite compared to its components. The study of the mechanism of the reaction using scavengers confirmed that the created holes (h+) are the most effective species in the process of photocatalytic degradation of MB. Notably, the catalyst was recyclable and could be used for degradation of other dyes.


Subject(s)
Chitin/analogs & derivatives , Coloring Agents/chemistry , Metal-Organic Frameworks/chemistry , Nanocomposites/chemistry , Water Purification/methods , Catalysis , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL