Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
PLoS One ; 18(9): e0291533, 2023.
Article in English | MEDLINE | ID: mdl-37708124

ABSTRACT

We previously introduced a three-stage design and associated end-of-stage analyses for allergen immunotherapy (AIT) trials. End-of-stage differences alone may not provide a fuller picture of Stages 2 and 3 effects because they may depend upon stage-specific durations. Therefore, we introduce an additional trend analysis to evaluate the difference in progression curves of two groups over the entire stage. Results from such analysis are used to inform persistence of end-of-stage benefit and thus provide evidence for stagewise effects beyond the study periods. We jointly apply end-of-stage and trend analyses to support the enhanced three-stage design to determine treatment response over time and sustained response to AIT. A simulation study was performed to illustrate the statistical properties (bias and power) of trend analyses under varying statistical missing mechanisms and effect sizes. The extent of bias depended on the missing mechanism and magnitude. Powers were largely driven by effect and sample sizes as well as pre-specified success margins, particularly of relative trend. As an illustration, assuming relative treatment differences of 25-30%, stagewise dropout rate of 15%, and parallel outcome progressions, a sample size of 200 per group may achieve 97% power to demonstrate a treatment effect and 53% power to demonstrate a sustained effect post-treatment. Trend analysis supplements the end-of-stage analysis to enhance the statistical claims of stagewise effects. Inferential statistics support our proposed trend analysis for evaluating benefits of AIT over time and inform clinical understanding and decisions.


Subject(s)
Desensitization, Immunologic , Dietary Supplements , Computer Simulation , Sample Size
2.
Vaccine ; 41(28): 4183-4189, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37244808

ABSTRACT

BACKGROUND: The mechanism for anaphylaxis following mRNA COVID-19 vaccination has been widely debated; understanding this serious adverse event is important for future vaccines of similar design. A mechanism proposed is type I hypersensitivity (i.e., IgE-mediated mast cell degranulation) to polyethylene glycol (PEG). Using an assay that, uniquely, had been previously assessed in patients with anaphylaxis to PEG, our objective was to compare anti-PEG IgE in serum from mRNA COVID-19 vaccine anaphylaxis case-patients and persons vaccinated without allergic reactions. Secondarily, we compared anti-PEG IgG and IgM to assess alternative mechanisms. METHODS: Selected anaphylaxis case-patients reported to U.S. Vaccine Adverse Event Reporting System December 14, 2020-March 25, 2021 were invited to provide a serum sample. mRNA COVID-19 vaccine study participants with residual serum and no allergic reaction post-vaccination ("controls") were frequency matched to cases 3:1 on vaccine and dose number, sex and 10-year age category. Anti-PEG IgE was measured using a dual cytometric bead assay (DCBA). Anti-PEG IgG and IgM were measured using two different assays: DCBA and a PEGylated-polystyrene bead assay. Laboratorians were blinded to case/control status. RESULTS: All 20 case-patients were women; 17 had anaphylaxis after dose 1, 3 after dose 2. Thirteen (65 %) were hospitalized and 7 (35 %) were intubated. Time from vaccination to serum collection was longer for case-patients vs controls (post-dose 1: median 105 vs 21 days). Among Moderna recipients, anti-PEG IgE was detected in 1 of 10 (10 %) case-patients vs 8 of 30 (27 %) controls (p = 0.40); among Pfizer-BioNTech recipients, it was detected in 0 of 10 case-patients (0 %) vs 1 of 30 (3 %) controls (p >n 0.99). Anti-PEG IgE quantitative signals followed this same pattern. Neither anti-PEG IgG nor IgM was associated with case status with both assay formats. CONCLUSION: Our results support that anti-PEG IgE is not a predominant mechanism for anaphylaxis post-mRNA COVID-19 vaccination.


Subject(s)
Anaphylaxis , COVID-19 Vaccines , COVID-19 , Female , Humans , Male , Anaphylaxis/etiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Immunoglobulin E , Immunoglobulin G , Immunoglobulin M , Immunosuppressive Agents , Polyethylene Glycols/adverse effects , RNA, Messenger , Vaccination/adverse effects
3.
J Allergy Clin Immunol ; 149(3): 812-818, 2022 03.
Article in English | MEDLINE | ID: mdl-35249640

ABSTRACT

Clinical studies demonstrate that efficacy and safety in allergen immunotherapy (AIT) are linked to a multiplicity of factors decisively influencing success or failure. In recent years, numerous trials were performed with correspondent study results published. Yet, the number of AIT products successfully obtaining licensure in the analogous time frame is comparably limited. Essential for licensure is that the AIT product investigated remains comparable in its qualitative and quantitative composition throughout the clinical development. Verification of efficacy is not solely demonstrated by a statistically significant difference between the test and control populations; it must also be shown to be clinically relevant. Choice of meaningful inclusion and end-point criteria is critical. Post hoc or subgroup analysis can be supportive but needs verification as predefined criteria in additional studies. Data analysis may be presented on varying analysis populations, while it should be based on the intention-to-treat population for regulatory review to allow objective assessment of the treatment effect on the overall study population. Apparently conflicting interpretations of clinical data between publications and regulatory review are frequently based on their inherently different objectives, with regulatory review taking into considerations the full data sets of all relevant clinical studies for the concerned AIT product to allow an informed decision on licensure.


Subject(s)
Allergens , Desensitization, Immunologic , Allergens/therapeutic use , Desensitization, Immunologic/methods , Europe , Humans , United States
4.
Allergy ; 77(6): 1835-1842, 2022 06.
Article in English | MEDLINE | ID: mdl-34599605

ABSTRACT

BACKGROUND: Clinical trials of allergen immunotherapy (AIT) may require up to 5 years to complete. These lengthy trials may be complicated by high and potentially differential dropouts, especially among participants who perceive that they are receiving placebo. We propose a three-stage design in which the placebo group in Stage 1 crosses over to receive active treatment in Stage 2. In Stage 3, AIT is discontinued to determine whether benefit is maintained post-treatment. We apply inferential statistics to support the three-stage design for clinical trials to determine clinical efficacy, treatment response over time, and sustained response to AIT. METHODS: The proposed framework constitutes a series of hypothesis tests for comparing treatment responses at the end of each stage. A simulation study was performed to illustrate the statistical properties under varying statistical missing mechanisms and effect sizes. RESULTS: The statistical properties in terms of bias and statistical power were consistent with what are expected from conventional analyses. Specifically, the extent of bias depended on the missing mechanism and magnitude. The statistical powers were largely driven by effect and sample sizes as well as prespecified success margins. As an illustration, assuming relative treatment differences of 25% and stagewise dropout rate of 15%, a sample size of 200 per group may achieve 93% power to demonstrate a treatment effect and 60% power to demonstrate a maintained response post-treatment. CONCLUSIONS: Inferential statistics support our proposed study design for evaluating benefits of AIT over time and inform clinical understanding and decisions.


Subject(s)
Desensitization, Immunologic , Research Design , Humans , Treatment Outcome
5.
Front Immunol ; 12: 725831, 2021.
Article in English | MEDLINE | ID: mdl-34594335

ABSTRACT

The topic of standardization in relation to allergen products has been discussed by allergists, regulators, and manufacturers for a long time. In contrast to synthetic medicinal products, the natural origin of allergen products makes the necessary comparability difficult to achieve. This holds true for both aspects of standardization: Batch-to-batch consistency (or product-specific standardization) and comparability among products from different manufacturers (or cross-product comparability). In this review, we focus on how the United States and the European Union have tackled the topic of allergen product standardization in the past, covering the early joint standardization efforts in the 1970s and 1980s as well as the different paths taken by the two players thereafter until today. So far, these two paths have been based on rather classical immunological methods, including the corresponding benefits like simple feasability. New technologies such as mass spectrometry present an opportunity to redefine the field of allergen standardization in the future.


Subject(s)
Desensitization, Immunologic/standards , Practice Guidelines as Topic , Quality Control , Technology, Pharmaceutical/standards , Allergens , Desensitization, Immunologic/trends , Europe , Humans , Technology, Pharmaceutical/trends , United States
6.
J Allergy Clin Immunol ; 148(5): 1324-1331.e12, 2021 11.
Article in English | MEDLINE | ID: mdl-34536416

ABSTRACT

BACKGROUND: Asthma is a heterogeneous disease. Clinical blood parameters differ by race/ethnicity and are used to distinguish asthma subtypes and inform therapies. Differences in subtypes may explain population-specific trends in asthma outcomes. However, these differences in racial/ethnic minority pediatric populations are unclear. OBJECTIVE: We investigated the association of blood parameters and asthma subtypes with asthma outcomes and examined population-specific eligibility for biologic therapies in minority pediatric populations. METHODS: Using data from 2 asthma case-control studies of pediatric minority populations, we performed case-control (N = 3738) and case-only (N = 2743) logistic regressions to quantify the association of blood parameters and asthma subtypes with asthma outcomes. Heterogeneity of these associations was tested using an interaction term between race/ethnicity and each exposure. Differences in therapeutic eligibility were investigated using chi-square tests. RESULTS: Race/ethnicity modified the association between total IgE and asthma exacerbations. Elevated IgE level was associated with worse asthma outcomes in Puerto Ricans. Allergic asthma was associated with worse outcomes in Mexican Americans, whereas eosinophilic asthma was associated with worse outcomes in Puerto Ricans. A lower proportion of Puerto Ricans met dosing criteria for allergic asthma-directed biologic therapy than other groups. A higher proportion of Puerto Ricans qualified for eosinophilic asthma-directed biologic therapy than African Americans. CONCLUSIONS: We found population-specific associations between blood parameters and asthma subtypes with asthma outcomes. Our findings suggest that eligibility for asthma biologic therapies differs across pediatric racial/ethnic populations. These findings call for more studies in diverse populations for equitable treatment of minority patients with asthma.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/epidemiology , Biological Products/therapeutic use , Ethnicity , Minority Groups , Racial Groups , Adolescent , Asthma/therapy , Case-Control Studies , Child , Eligibility Determination , Female , Humans , Immunoglobulin E/blood , Male , Phenotype , United States/epidemiology , Young Adult
7.
Allergy ; 76(12): 3589-3612, 2021 12.
Article in English | MEDLINE | ID: mdl-34028057

ABSTRACT

Allergen exposure chambers (AECs) can be used for controlled exposure to allergenic and non-allergenic airborne particles in an enclosed environment, in order to (i) characterize the pathological features of respiratory diseases and (ii) contribute to and accelerate the clinical development of pharmacological treatments and allergen immunotherapy for allergic disease of the respiratory tract (such as allergic rhinitis, allergic rhinoconjunctivitis, and allergic asthma). In the guidelines of the European Medicines Agency for the clinical development of products for allergen immunotherapy (AIT), the role of AECs in determining primary endpoints in dose-finding Phase II trials is emphasized. Although methodologically insulated from the variability of natural pollen exposure, chamber models remain confined to supporting secondary, rather than primary, endpoints in Phase III registration trials. The need for further validation in comparison with field exposure is clearly mandated. On this basis, the European Academy of Allergy and Clinical Immunology (EAACI) initiated a Task Force in 2015 charged to gain a better understanding of how AECs can generate knowledge about respiratory allergies and can contribute to the clinical development of treatments. Researchers working with AECs worldwide were asked to provide technical information in eight sections: (i) dimensions and structure of the AEC, (ii) AEC staff, (iii) airflow, air processing, and operating conditions, (iv) particle dispersal, (v) pollen/particle counting, (vi) safety and non-contamination measures, (vii) procedures for symptom assessments, (viii) tested allergens/substances and validation procedures. On this basis, a minimal set of technical requirements for AECs applied to the field of allergology is proposed.


Subject(s)
Asthma , Rhinitis, Allergic , Allergens , Desensitization, Immunologic , Humans , Pollen
8.
Allergy ; 76(12): 3723-3732, 2021 12.
Article in English | MEDLINE | ID: mdl-33864689

ABSTRACT

BACKGROUND: Mouse allergy is an important cause of indoor asthma and allergic rhinoconjunctivitis. The major mouse allergen, Mus m 1, is a complex of homologous pheromone-binding lipocalins called major urinary proteins (MUPs). METHODS: We analyzed the proteome of MUPs in mouse urine, commercial mouse epithelial extracts, and environmental samples using several approaches. These include as follows: two-dimensional electrophoresis and immunoblotting; liquid chromatography-high-resolution mass spectrometry (LC/HRMS); multiple reaction monitoring (MRM) mass spectrometry; and LC/HRMS analysis of glycans at the N-66 residue of MUP3. RESULTS: Albumin is predominant in the extracts, while MUPs are predominant in urine. LC/HRMS of 4 mouse allergen extracts revealed surprising heterogeneity. Of 22 known mouse MUPs, only 6 (MUP3, MUP4, MUP5, MUP13, MUP20, and MUP21) could be identified with MRM using unique peptides. Assessment of MUP content in urine, extracts, and dust samples showed good correlation between MRM and other methods working with different detection principles. All 6 identifiable MUPs were found in electrophoretically separated urine bands, but only MUP3 and MUP20 were above LOQ in unseparated mouse urine, and only MUP3, MUP4, and MUP20 were found in mouse epithelial extracts. Glycan heterogeneity was noted among 4 individual inbred mice: of 13 glycan structures detected, 8 were unique to one mouse, and only 2 glycan modifications were present in all 4 mice. CONCLUSIONS: Using mass spectrometry and MRM, mouse allergen extracts and urine samples are shown to be complex and heterogeneous. The efficacy and safety of commercial mouse allergen extracts will be improved with better controls of allergen content.


Subject(s)
Allergens , Asthma , Allergens/chemistry , Animals , Asthma/etiology , Dust , Mice , Proteome , Urine
10.
Allergy ; 76(6): 1629-1639, 2021 06.
Article in English | MEDLINE | ID: mdl-33452689

ABSTRACT

The first approved COVID-19 vaccines include Pfizer/BioNTech BNT162B2, Moderna mRNA-1273 and AstraZeneca recombinant adenoviral ChAdOx1-S. Soon after approval, severe allergic reactions to the mRNA-based vaccines that resolved after treatment were reported. Regulatory agencies from the European Union, Unites States and the United Kingdom agree that vaccinations are contraindicated only when there is an allergy to one of the vaccine components or if there was a severe allergic reaction to the first dose. This position paper of the European Academy of Allergy and Clinical Immunology (EAACI) agrees with these recommendations and clarifies that there is no contraindication to administer these vaccines to allergic patients who do not have a history of an allergic reaction to any of the vaccine components. Importantly, as is the case for any medication, anaphylaxis may occur after vaccination in the absence of a history of allergic disease. Therefore, we provide a simplified algorithm of prevention, diagnosis and treatment of severe allergic reactions and a list of recommended medications and equipment for vaccine centres. We also describe potentially allergenic/immunogenic components of the approved vaccines and propose a workup to identify the responsible allergen. Close collaboration between academia, regulatory agencies and vaccine producers will facilitate approaches for patients at risks, such as incremental dosing of the second injection or desensitization. Finally, we identify unmet research needs and propose a concerted international roadmap towards precision diagnosis and management to minimize the risk of allergic reactions to COVID-19 vaccines and to facilitate their broader and safer use.


Subject(s)
COVID-19 Vaccines , COVID-19 , BNT162 Vaccine , Humans , SARS-CoV-2 , United Kingdom
11.
Curr Allergy Asthma Rep ; 20(12): 77, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33057855

ABSTRACT

The recent approval of Palforzia for treatment of peanut allergy by the US Food and Drug Administration (USFDA) predicts that additional products for oral immunotherapy (OIT) are on the horizon. In this article, the authors review the legal framework by which the USFDA regulates products for OIT of food allergy and the clinical data that demonstrated that the safety and effectiveness profile of Palforzia supported approval and conclude with a discussion of oral food challenge (OFC) as a clinical endpoint to demonstrate safety and effectiveness of OIT products.


Subject(s)
Allergens/therapeutic use , Food Hypersensitivity/therapy , Immunotherapy/methods , Peanut Hypersensitivity/therapy , Administration, Oral , Allergens/administration & dosage , Humans , United States
12.
Clin Exp Allergy ; 50(6): 741-751, 2020 06.
Article in English | MEDLINE | ID: mdl-32243003

ABSTRACT

BACKGROUND: Allergen extracts are the primary tool for diagnosis and treatment of allergic diseases. In the United States, most allergen extracts are non-standardized. More sophisticated analytical approaches are needed to characterize these products and enable manufacturers and regulators to better determine potency. OBJECTIVE: To expand the multiple reaction monitoring (MRM) assay for an in-depth characterization of German cockroach (GCr; Blattella germanica) allergen extracts. METHODS: We applied advanced liquid chromatography (LC) and mass spectrometry (MS) techniques including MRM. The expanded LC/MRM-MS method was optimized to measure known GCr allergens and their isoforms/variants in commercial extracts and environmental samples. We performed isoform-specific allergen measurements in multiple extracts from four commercial sources and extracts prepared using environmental samples from urban homes. To investigate causes of heterogeneity, we examined over 30 extraction process variables. RESULTS: Evaluation of the commercial extracts confirmed the variability of production lots and commercial sources. Commonly used defatting and extraction protocols yielded extracts with comparable allergen profiles and content. However, the identity and quality of source materials was a major contributor to variability. In comparing commercial GCr extracts to environmental samples, relative quantities of Bla g 1, Bla g 2, Bla g 3, Bla g 4 and Bla g 11 were similar, while Bla g 5, Bla g 6, Bla g 7 and Bla g 8 were present in the environmental samples but largely absent for the commercial extracts. CONCLUSIONS AND CLINICAL RELEVANCE: LC/MRM-MS can be used to measure all known GCr allergens in commercial allergen extracts and environmental samples. Significant differences exist between allergen profiles of commercial extracts and the profiles of environmental samples from dwellings. This analytical platform can serve as a template to achieve better product characterization of similarly complex products.


Subject(s)
Allergens/chemistry , Blattellidae/chemistry , Complex Mixtures/chemistry , Insect Proteins/chemistry , Animals , Chromatography, Liquid , Mass Spectrometry
13.
Front Immunol ; 11: 605673, 2020.
Article in English | MEDLINE | ID: mdl-33542718

ABSTRACT

Type I interferons (IFN-I) were first discovered as an antiviral factor by Isaacs and Lindenmann in 1957, but they are now known to also modulate innate and adaptive immunity and suppress proliferation of cancer cells. While much has been revealed about IFN-I, it remains a mystery as to why there are 16 different IFN-I gene products, including IFNß, IFNω, and 12 subtypes of IFNα. Here, we discuss shared and unique aspects of these IFN-I in the context of their evolution, expression patterns, and signaling through their shared heterodimeric receptor. We propose that rather than investigating responses to individual IFN-I, these contexts can serve as an alternative approach toward investigating roles for IFNα subtypes. Finally, we review uses of IFNα and IFNß as therapeutic agents to suppress chronic viral infections or to treat multiple sclerosis.


Subject(s)
Interferon-alpha/metabolism , Interferon-beta/metabolism , Antiviral Agents/therapeutic use , Evolution, Molecular , Host Microbial Interactions , Humans , Immunologic Factors/therapeutic use , Interferon Regulatory Factors/metabolism , Interferon-alpha/genetics , Interferon-alpha/immunology , Interferon-alpha/therapeutic use , Interferon-beta/genetics , Interferon-beta/immunology , Interferon-beta/therapeutic use , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Signal Transduction , Virus Diseases/drug therapy , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Diseases/virology
14.
Allergy ; 74 Suppl 108: 3-25, 2019 12.
Article in English | MEDLINE | ID: mdl-31872476

ABSTRACT

The seventh "Future of the Allergists and Specific Immunotherapy (FASIT)" workshop held in 2019 provided a platform for global experts from academia, allergy clinics, regulatory authorities and industry to review current developments in the field of allergen immunotherapy (AIT). Key domains of the meeting included the following: (a) Biomarkers for AIT and allergic asthma; (b) visions for the future of AIT; (c) progress and data for AIT in asthma and the updates of GINA and EAACI Asthma Guidelines (separated for house dust mite SCIT, SLIT tablets and SLIT drops; patient populations) including a review of clinically relevant endpoints in AIT studies in asthma; (d) regulatory prerequisites such as the "Therapy Allergen Ordinance" in Germany; (e) optimization of trial design in AIT clinical research; (f) challenges planning and conducting phase III (field) studies and the future role of Allergen Exposure Chambers (AEC) in AIT product development from the regulatory point of view. We report a summary of panel discussions of all six domains and highlight unmet needs and possible solutions for the future.


Subject(s)
Asthma/therapy , Rhinitis, Allergic/therapy , Sublingual Immunotherapy/trends , Allergens/immunology , Animals , Antibodies, Blocking/immunology , Antibodies, Neutralizing/immunology , Asthma/immunology , Biomarkers , Humans , Immunoglobulin G/immunology , Pyroglyphidae/immunology , Rhinitis, Allergic/immunology
15.
J Virol ; 93(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31484754

ABSTRACT

Respiratory syncytial virus (RSV) infects and causes disease in infants and reinfects with reduced disease throughout life without significant antigenic change. In contrast, reinfection by influenza A virus (IAV) largely requires antigenic change. The adaptive immune response depends on antigen presentation by dendritic cells (DC), which may be too immature in young infants to induce a fully protective immune response against RSV reinfections. We therefore compared the ability of RSV and IAV to activate primary human cord blood (CB) and adult blood (AB) myeloid DC (mDC). While RSV and IAV infected with similar efficiencies, RSV poorly induced maturation and cytokine production in CB and AB mDC. This difference between RSV and IAV was more profound in CB mDC. While IAV activated CB mDC to some extent, RSV did not induce CB mDC to increase the maturation markers CD38 and CD86 or CCR7, which directs DC migration to lymphatic tissue. Low CCR7 surface expression was associated with high expression of CCR5, which keeps DC in inflamed peripheral tissues. To evaluate a possible inhibition by RSV, we subjected RSV-inoculated AB mDC to secondary IAV inoculation. While RSV-inoculated AB mDC responded to secondary IAV inoculation by efficiently upregulating activation markers and cytokine production, IAV-induced CCR5 downregulation was slightly inhibited in cells exhibiting robust RSV infection. Thus, suboptimal stimulation and weak and mostly reversible inhibition seem to be responsible for inefficient mDC activation by RSV. The inefficient mDC stimulation and immunological immaturity in young infants may contribute to reduced immune responses and incomplete protection against RSV reinfection.IMPORTANCE Respiratory syncytial virus (RSV) causes disease early in life and can reinfect symptomatically throughout life without undergoing significant antigenic change. In contrast, reinfection by influenza A virus (IAV) requires antigenic change. The adaptive immune response depends on antigen presentation by dendritic cells (DC). We used myeloid DC (mDC) from cord blood and adult blood donors to evaluate whether immunological immaturity contributes to the inability to mount a fully protective immune response to RSV. While IAV induced some activation and chemokine receptor switching in cord blood mDC, RSV did not. This appeared to be due to a lack of activation and a weak and mostly reversible inhibition of DC functions. Both viruses induced a stronger activation of mDC from adults than mDC from cord blood. Thus, inefficient stimulation of mDC by RSV and immunological immaturity may contribute to reduced immune responses and increased susceptibility to RSV disease and reinfection in young infants.


Subject(s)
Antigen Presentation/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/metabolism , Adaptive Immunity/immunology , Adult , Chemokines/metabolism , Cytokines/metabolism , Dendritic Cells/metabolism , Dendritic Cells/virology , Fetal Blood/immunology , Humans , Infant, Newborn , Influenza A virus/metabolism , Influenza, Human/metabolism , Influenza, Human/virology , Myeloid Cells/metabolism , Myeloid Cells/virology , Receptors, Chemokine/metabolism
17.
Front Immunol ; 10: 1019, 2019.
Article in English | MEDLINE | ID: mdl-31156620

ABSTRACT

Viral defense at mucosal sites depends on interferons (IFN) and IFN stimulated genes (ISGs), either of which may be constitutively expressed to maintain an "antiviral state" (AVS). However, the mechanisms that govern the AVS are poorly defined. Using a BEAS-2B respiratory epithelial cell line deficient in IRF1, we demonstrate higher susceptibility to infection with vesicular stomatitis virus (VSV) and influenza virus. IRF1-mediated restriction of VSV is IFN-independent, as blockade of types I and III IFNs and JAK-STAT signaling before infection did not affect VSV infection of either parent or IRF1 KO cells. Transcriptome analysis revealed that IRF1 regulates constitutive expression of ~300 genes, including antiviral ISGs: OAS2, BST2, and RNASEL and knockdown of any of these IRF1-dependent genes increased VSV infection. Additionally, IRF1 enhances rapid expression of IFNß and IFNλ after stimulation with poly I:C and also regulates ISG expression. Mechanistically, IRF1 enhances recruitment of BRD4 to promotor-enhancer regions of ISGs for rapid expression and maintains levels of histone H3K4me1 for optimal constitutive expression. Finally, IRF1 also regulates constitutive expression of TLR2 and TLR3 and promotes signaling through these pattern recognition receptors (PRR). These data reveal multiple roles for IRF1 toward effective anti-viral responses by maintaining IFN-independent constitutive expression of anti-viral ISGs and supporting early IFN-dependent responses to PRR stimulation.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , Antigens, CD/genetics , Endoribonucleases/genetics , Influenza, Human/immunology , Interferon Regulatory Factor-1/genetics , Orthomyxoviridae/immunology , Rhabdoviridae Infections/immunology , Vesiculovirus/immunology , A549 Cells , Epithelial Cells/metabolism , GPI-Linked Proteins/genetics , Gene Expression Regulation/genetics , Gene Knockout Techniques , Humans , Influenza, Human/virology , Interferon Regulatory Factor-1/metabolism , Interferons/metabolism , Respiratory Mucosa/cytology , Rhabdoviridae Infections/virology , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptors/metabolism , Transfection , Virus Replication/genetics , Virus Replication/immunology
18.
J Interferon Cytokine Res ; 39(5): 283-292, 2019 05.
Article in English | MEDLINE | ID: mdl-30920934

ABSTRACT

Type I interferons (IFNs) signal by forming a high affinity IFN-IFNAR2 dimer, which subsequently recruits IFNAR1 to form a ternary complex that initiates JAK/STAT signaling. Among the 12 IFNα subtypes, IFNα1 has a uniquely low affinity for IFNAR2 (<100 × of the other IFNα subtypes) and commensurately weak antiviral activity, suggesting an undefined function distinct from suppression of viral infections. Also unique in IFNα1 is substitution of a serine for phenylalanine at position 27, a contact point that stabilizes the IFNα:IFNAR2 hydrophobic interface. To determine whether IFNα1-S27 contributes to the low affinity for IFNAR2, we created an IFNα1 mutein, IFNα1-S27F, and compared it to wild-type IFNα1 and IFNα2. Substitution of phenylalanine for serine increased affinity for IFNAR2 ∼4-fold and commensurately enhanced activation of STAT1, STAT3, and STAT5, transcription of a subset of interferon stimulated genes, and restriction of vesicular stomatitis virus infection in vitro. Structural modeling suggests that S27 of IFNα1 disrupts the IFNα:IFNAR2 hydrophobic interface that is otherwise stabilized by F27 and that replacing S27 with phenylalanine partially restores the hydrophobic surface. Disruption of the hydrophobic IFNα:IFNAR2 interface by the unique S27 of IFN α1 contributes to its low affinity and weak antiviral activity.


Subject(s)
Interferon-alpha/immunology , Interferon-alpha/metabolism , Receptor, Interferon alpha-beta/metabolism , Serine , Vesiculovirus/immunology , Humans , Hydrophobic and Hydrophilic Interactions , Interferon-alpha/chemistry , Microbial Sensitivity Tests , Models, Molecular , Serine/genetics , Serine/metabolism , Tumor Cells, Cultured
19.
J Allergy Clin Immunol ; 143(3): 1176-1182.e5, 2019 03.
Article in English | MEDLINE | ID: mdl-30217468

ABSTRACT

BACKGROUND: Virus-associated febrile lower respiratory tract infections (fLRIs) during infancy have been identified as risk factors for persistent wheeze development. We hypothesized that variations in innate immune defense capacity during this period, as exemplified by production of type 1 and 3 interferons (T1/3IFNs), might be an underlying determinant of risk. OBJECTIVE: We sought to investigate relationships between postnatal development of innate interferon response capacity and susceptibility to early infections and persistent wheeze. METHODS: We studied a subset of subjects from a birth cohort at high risk for asthma/allergy and determined the capacity of cord blood cells (n = 151) to produce any of a panel of 17 T1/3IFNs in response to the viral mimic polyinosinic-polycytidylic acid using a sensitive PCR assay. We investigated relationships between neonatal interferon responses and lower respiratory tract infection history during infancy, wheezing history to 5 age years, and ensuing maturation of innate immune capacity by age 4 years (n = 160) and 10 years (n = 125). RESULTS: Although cohort subjects produced an average of 2.6 ± 0.3 of the 17 innate interferons tested at birth, 24% showed no T1/3IFN production. This nonproducer subgroup showed increased risk for infant fLRIs (odds ratio, 2.62; 95% CI, 1.14-6.06; P = .024) and persistent wheeze (odds ratio, 4.24; 95% CI, 1.60-11.24; P = .004) at age 5 years relative to those producing 1 or more T1/3IFNs, whereas risk for infant wheezy lower respiratory tract infections or "transient early wheeze" was unaffected. Moreover, infants who experienced fLRIs subsequently demonstrated accelerated development of T1/3IFN response capacity between 1 and 4 years of age. CONCLUSIONS: T1/3IFN response capacity appears strongly developmentally constrained at birth. Infants in whom this negative regulation is strongest manifest increased risk for severe respiratory tract infections during infancy and subsequent persistent wheeze.


Subject(s)
Asthma/immunology , Interferons/immunology , Respiratory Sounds/immunology , Respiratory Tract Infections/immunology , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Leukocytes, Mononuclear/immunology , Male , Risk Factors
20.
J Virol ; 92(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29976658

ABSTRACT

Host-influenza virus interplay at the transcript level has been extensively characterized in epithelial cells. Yet, there are no studies that simultaneously characterize human host and influenza A virus (IAV) genomes. We infected human bronchial epithelial BEAS-2B cells with two seasonal IAV/H3N2 strains, Brisbane/10/07 and Perth/16/09 (reference strains for past vaccine seasons) and the well-characterized laboratory strain Udorn/307/72. Strand-specific RNA sequencing (RNA-seq) of the infected BEAS-2B cells allowed for simultaneous analysis of host and viral transcriptomes, in addition to pathogen genomes, to reveal changes in mRNA expression and alternative splicing (AS). In general, patterns of global and immune gene expression induced by the three IAVs were mostly shared. However, AS of host transcripts and small nuclear RNAs differed between the seasonal and laboratory strains. Analysis of viral transcriptomes showed deletions of the polymerase components (defective interfering-like RNAs) within the genome. Surprisingly, we found that the neuraminidase gene undergoes AS and that the splicing event differs between seasonal and laboratory strains. Our findings reveal novel elements of the host-virus interaction and highlight the importance of RNA-seq in identifying molecular changes at the genome level that may contribute to shaping RNA-based innate immunity.IMPORTANCE The use of massively parallel RNA sequencing (RNA-seq) has revealed insights into human and pathogen genomes and their evolution. Dual RNA-seq allows simultaneous dissection of host and pathogen genomes and strand-specific RNA-seq provides information about the polarity of the RNA. This is important in the case of negative-strand RNA viruses like influenza virus, which generate positive (complementary and mRNA) and negative-strand RNAs (genome) that differ in their potential to trigger innate immunity. Here, we characterize interactions between human bronchial epithelial cells and three influenza A/H3N2 strains using strand-specific dual RNA-seq. We focused on this subtype because of its epidemiological importance in causing significant morbidity and mortality during influenza epidemics. We report novel elements that differ between seasonal and laboratory strains highlighting the complexity of the host-virus interplay at the RNA level.


Subject(s)
Genome, Human/genetics , Genome, Viral/genetics , Host-Pathogen Interactions/genetics , Immunity, Innate/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/immunology , Bronchi/cytology , Bronchi/virology , Epithelial Cells/virology , Gene Expression Profiling , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Host-Pathogen Interactions/immunology , Humans , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/virology , Neuraminidase/genetics , RNA Splicing/genetics , Seasons , Sequence Analysis, RNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...