Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(18): 4844-4850, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38682807

ABSTRACT

Most single quantum emitters display non-steady emission properties. Models that explain this effect have primarily relied on photoluminescence measurements that reveal variations in intensity, wavelength, and excited-state lifetime. While photoluminescence excitation spectroscopy could provide complementary information, existing experimental methods cannot collect spectra before individual emitters change in intensity (blink) or wavelength (spectrally diffuse). Here, we present an experimental approach that circumvents such issues, allowing the collection of excitation spectra from individual emitters. Using rapid modulation of the excitation wavelength, we collect and classify excitation spectra from individual CdSe/CdS/ZnS core/shell/shell quantum dots. The spectra, along with simultaneous time-correlated single-photon counting, reveal two separate emission-reduction mechanisms caused by charging and trapping, respectively. During bright emission periods, we also observe a correlation between emission red-shifts and the increased oscillator strength of higher excited states. Quantum-mechanical modeling indicates that diffusion of charges in the vicinity of an emitter polarizes the exciton and transfers the oscillator strength to higher-energy transitions.

2.
Chemistry ; 30(1): e202303877, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38088555

ABSTRACT

Invited for the cover of this issue is the group of Professor Bert Weckhuysen at Utrecht University. The image depicts the change in fluorescence color of a resorufin dye molecule when it is protonated and confined inside the micropores of zeolite-ß. Read the full text of the article at 10.1002/chem.202302553.

3.
Angew Chem Int Ed Engl ; 63(4): e202314528, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38037863

ABSTRACT

Porous solids often contain complex pore networks with pores of various sizes. Tracking individual fluorescent probes as they diffuse through porous materials can be used to characterize pore networks at tens of nanometers resolution. However, understanding the motion behavior of fluorescent probes in confinement is crucial to reliably derive pore network properties. Here, we introduce well-defined lithography-made model pores developed to study probe behavior in confinement. We investigated the influence of probe-host interactions on diffusion and trapping of confined single-emitter quantum-dot probes. Using the pH-responsiveness of the probes, we were able to largely suppress trapping at the pore walls. This enabled us to define experimental conditions for mapping of the accessible pore space of a one-dimensional pore array as well as a real-life polymerization-catalyst-support particle.

4.
Chemistry ; 30(1): e202302553, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37815001

ABSTRACT

We have used confocal laser scanning microscopy on the small, fluorescent resorufin dye molecule to visualize molecular accessibility and diffusion in the hierarchical, anisotropic pore structure of large (~10 µm-sized) zeolite-ß crystals. The resorufin dye is widely used in life and materials science, but only in its deprotonated form because the protonated molecule is barely fluorescent in aqueous solution. In this work, we show that protonated resorufin is in fact strongly fluorescent when confined within zeolite micropores, thus enabling fluorescence microimaging experiments. We find that J-aggregation guest-guest interactions lead to a decrease in the measured fluorescence intensity that can be prevented by using non-fluorescent spacer molecules. We characterized the pore space by introducing resorufin from the outside solution and following its diffusion into zeolite-ß crystals. The eventual homogeneous distribution of resorufin molecules throughout the zeolite indicates a fully accessible pore network. This enables the quantification of the diffusion coefficient in the straight pores of zeolite-ß without the need for complex analysis, and we found a value of 3×10-15  m2  s-1 . Furthermore, we saw that diffusion through the straight pores of zeolite-ß is impeded when crossing the boundaries between zeolite subunits.

5.
Catal Sci Technol ; 13(22): 6366-6376, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014392

ABSTRACT

Operando Raman spectroscopy is a powerful analytical tool to provide new insights in the working and deactivation principles of solid catalysts. Intense fluorescence can obscure Raman spectra to the extent that they become uninterpretable. Time-gated Raman spectroscopy, based on pulsed excitation and time-gated detection, suppresses background fluorescence based on its slower time dynamics compared to Raman scattering. In this work, we demonstrate and quantify the benefit of time gating for operando Raman spectroscopy, using the propane dehydrogenation reaction over Pt-Sn-based catalyst materials as a case study. Experimental time-gated Raman spectroscopy data are fitted to a time-trace model that is used to optimize time gating for the maximum signal-to-background-noise ratio. Time-gated Raman spectra of a spent propane dehydrogenation catalyst material show lower background fluorescence compared to the time-integrated Raman spectra counterparts. Simultaneous operando time-gated and time-integrated Raman spectroscopy experiments demonstrate the benefit of time gating to obtain more distinct Raman features, especially in the early coking stages where spectra are dominated by background fluorescence.

6.
ACS Nano ; 17(20): 20053-20061, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37797269

ABSTRACT

Controlling and understanding reaction temperature variations in catalytic processes are crucial for assessing the performance of a catalyst material. Local temperature measurements are challenging, however. Luminescence thermometry is a promising remote-sensing tool, but it is cross-sensitive to the optical properties of a sample and other external parameters. In this work, we measure spatial variations in the local temperature on the micrometer length scale during carbon dioxide (CO2) methanation over a TiO2-supported Ni catalyst and link them to variations in catalytic performance. We extract local temperatures from the temperature-dependent emission of Y2O3:Nd3+ particles, which are mixed with the CO2 methanation catalyst. Scanning, where a near-infrared laser locally excites the emitting Nd3+ ions, produces a temperature map with a micrometer pixel size. We first designed the Y2O3:Nd3+ particles for optimal temperature precision and characterized cross-sensitivity of the measured signal to parameters other than temperature, such as light absorption by the blackened sample due to coke deposition at elevated temperatures. Introducing reaction gases causes a local temperature increase of the catalyst of on average 6-25 K, increasing with the reactor set temperature in the range of 550-640 K. Pixel-to-pixel variations in the temperature increase show a standard deviation of up to 1.5 K, which are attributed to local variations in the catalytic reaction rate. Mapping and understanding such temperature variations are crucial for the optimization of overall catalyst performance on the nano- and macroscopic scale.

7.
Nanoscale ; 15(41): 16601-16611, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37812063

ABSTRACT

The photoluminescence (PL) of lanthanide-doped nanocrystals can be quenched by energy transfer to vibrations of molecules located within a few nanometers from the dopants. Such short-range electronic-to-vibrational energy transfer (EVET) is often undesired as it reduces the photoluminescence efficiency. On the other hand, EVET may be exploited to extract information about molecular vibrations in the local environment of the nanocrystals. Here, we investigate the influence of solvent and gas environments on the PL properties of NaYF4:Er3+,Yb3+ upconversion nanocrystals. We relate changes in the PL spectrum and excited-state lifetimes in different solvents and their deuterated analogues to quenching of specific lanthanide levels by EVET to molecular vibrations. Similar but weaker changes are induced when we expose a film of nanocrystals to a gas environment with different amounts of H2O or D2O vapor. Quenching of green- and red-emitting levels of Er3+ can be explained in terms of EVET-mediated quenching that involves molecular vibrations with energies resonant with the gap between the energy levels of the lanthanide. Quenching of the near-infrared-emitting level is more complex and may involve EVET to combination-vibrations or defect-mediated quenching. EVET-mediated quenching holds promise as a mechanism to probe the local chemical environment-both for nanocrystals dispersed in a liquid and for nanocrystals exposed to gaseous molecules that adsorb onto the nanocrystal surface.

8.
Nano Lett ; 23(18): 8697-8703, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37672486

ABSTRACT

Indium phosphide colloidal quantum dots (CQDs) are the main alternative for toxic and restricted Cd based CQDs for lighting and display applications. Here we systematically report on the size-dependent optical absorption, ensemble, and single particle photoluminescence (PL) and biexciton lifetimes of core-only InP CQDs. This systematic study is enabled by improvements in the synthesis of InP CQDs to yield a broad size series of monodisperse core-only InP CQDs with narrow absorption and PL line width and significant PL quantum yield.

9.
Nano Lett ; 23(14): 6560-6566, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37450686

ABSTRACT

Ongoing developments in science and technology require temperature measurements at increasingly higher spatial resolutions. Nanocrystals with temperature-sensitive luminescence are a popular thermometer for these applications offering high precision and remote read-out. Here, we demonstrate that ratiometric luminescence thermometry experiments may suffer from systematic errors in nanostructured environments. We place lanthanide-based luminescent nanothermometers at controlled distances of up to 600 nm from a Au surface. Although this geometry supports no absorption or scattering resonances, distortion of the emission spectra of the thermometers due to the modified density of optical states results in temperature read-out errors of up to 250 K. Our simple analytical model explains the effects of thermometer emission frequencies, experimental equipment, and sample properties on the magnitude of the errors. We discuss the relevance of our findings in several experimental scenarios. Such errors do not always occur, but they are expected in measurements near reflecting interfaces or scattering objects.

10.
J Phys Chem Lett ; 14(23): 5353-5361, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37276380

ABSTRACT

Experiments on single colloidal quantum dots (QDs) have revealed temporal fluctuations in the emission efficiency of the single-exciton state. These fluctuations, often termed "blinking", are caused by opening/closing of charge-carrier traps and/or charging/discharging of the QD. In the regime of strong optical excitation, multiexciton states are formed. The emission efficiencies of multiexcitons are lower because of Auger processes, but a quantitative characterization is challenging. Here, we quantify fluctuations of the biexciton efficiency for single CdSe/CdS/ZnS core-shell QDs. We find that the biexciton efficiency "blinks" significantly. The additional electron due to charging of a QD accelerates Auger recombination by a factor of 2 compared to the neutral biexciton, while opening/closing of a charge-carrier trap leads to an increase of the nonradiative recombination rate by a factor of 4. To understand the fast rate of trap-assisted recombination, we propose a revised model for trap-assisted recombination based on reversible trapping. Finally, we discuss the implications of biexciton blinking for lasing applications.

11.
Nano Lett ; 23(12): 5417-5423, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37290051

ABSTRACT

Semiconductor nanocrystal emission polarization is a crucial probe of nanocrystal physics and an essential factor for nanocrystal-based technologies. While the transition dipole moment for the lowest excited state to ground state transition is well characterized, the dipole moment of higher multiexcitonic transitions is inaccessible via most spectroscopy techniques. Here, we realize direct characterization of the doubly excited-state relaxation transition dipole by heralded defocused imaging. Defocused imaging maps the dipole emission pattern onto a fast single-photon avalanche diode detector array, allowing the postselection of photon pairs emitted from the biexciton-exciton emission cascade and resolving the differences in transition dipole moments. Type-I1/2 seeded nanorods exhibit higher anisotropy of the biexciton-to-exciton transition compared to the exciton-to-ground state transition. In contrast, type-II seeded nanorods display a reduction of biexciton emission anisotropy. These findings are rationalized in terms of an interplay between the transient dynamics of the refractive index and the excitonic fine structure.

12.
Angew Chem Int Ed Engl ; 62(28): e202305086, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37170964

ABSTRACT

ß-NaYF4 nanocrystals are a popular class of optical materials. They can be doped with optically active lanthanide ions and shaped into core-multi-shell geometries with controlled dopant distributions. Here, we follow the synthesis of ß-NaYF4 nanocrystals from α-NaYF4 precursor particles using in situ small-angle and wide-angle X-ray scattering and ex situ electron microscopy. We observe an evolution from a unimodal particle size distribution to bimodal, and eventually back to unimodal. The final size distribution is narrower in absolute numbers than the initial distribution. These peculiar growth dynamics happen in large part before the α-to-ß phase transformation. We propose that the splitting of the size distribution is caused by variations in the reactivity of α-NaYF4 precursor particles, potentially due to inter-particle differences in stoichiometry. Rate equation modeling confirms that a continuous distribution of reactivities can result in the observed particle growth dynamics.

13.
Angew Chem Int Ed Engl ; 61(52): e202211991, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36328981

ABSTRACT

Often the reactor or the reaction medium temperature is reported in the field of heterogeneous catalysis, even though it could vary significantly from the reactive catalyst temperature. The influence of the catalyst temperature on the catalytic performance and vice versa is therefore not always accurately known. We here apply EuOCl as both solid catalyst and thermometer, allowing for operando temperature determination. The interplay between reaction conditions and the catalyst temperature dynamics is studied. A maximum temperature difference between the catalyst and oven of +16 °C was observed due to the exothermicity of the methane oxychlorination reaction. Heat dissipation by radiation appears dominating compared to convection in this set-up, explaining the observed uniform catalyst bed temperature. Application of operando catalyst thermometry could provide a deeper mechanistic understanding of catalyst performances and allow for safer process operation in chemical industries.

14.
J Phys Chem Lett ; 13(42): 9950-9956, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36260410

ABSTRACT

Impurity doping of low-dimensional semiconductors is an interesting route towards achieving control over carrier dynamics and energetics, e.g., to improve hot carrier extraction, or to obtain strongly Stokes shifted luminescence. Such studies remain, however, underexplored for the emerging family of III-V colloidal quantum dots (QDs). Here, we show through a detailed global analysis of multiresonant pump-probe spectroscopy that electron cooling in copper-doped InP quantum dot (QDs) proceeds on subpicosecond time scales. Conversely, hole localization on Cu dopants is remarkably slow (1.8 ps), yet still leads to very efficient subgap emission. Due to this slow hole localization, common Auger assisted pathways in electron cooling cannot be blocked by Cu doping III-V systems, in contrast with the case of II-VI QDs. Finally, we argue that the structural relaxation around the Cu dopants, estimated to impart a reorganization energy of 220 meV, most likely proceeds simultaneously with the localization itself leading to efficient luminescence.

15.
Sci Rep ; 12(1): 9595, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35689015

ABSTRACT

Single-particle tracking is a powerful approach to study the motion of individual molecules and particles. It can uncover heterogeneities that are invisible to ensemble techniques, which places it uniquely among techniques to study mass transport. Analysis of the trajectories obtained with single-particle tracking in inorganic porous hosts is often challenging, because trajectories are short and/or motion is heterogeneous. We present the DiffusionLab software package for motion analysis of such challenging data sets. Trajectories are first classified into populations with similar characteristics to which the motion analysis is tailored in a second step. DiffusionLab provides tools to classify trajectories based on the motion type either with machine learning or manually. It also offers quantitative mean squared displacement analysis of the trajectories. The software can compute the diffusion constant for an individual trajectory if it is sufficiently long, or the average diffusion constant for multiple shorter trajectories. We demonstrate the DiffusionLab approach via the analysis of a simulated data set with motion types frequently observed in inorganic porous hosts, such as zeolites. The software package with graphical user interface and its documentation are freely available.


Subject(s)
Single Molecule Imaging , Software , Diffusion , Motion
16.
J Phys Chem Lett ; 13(18): 4145-4151, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35506998

ABSTRACT

In semiconductor nanocrystals, excited electrons relax through multiple radiative and nonradiative pathways. This complexity complicates characterization of their decay processes with standard time- and temperature-dependent photoluminescence studies. Here, we exploit a simple nanophotonic approach to augment such measurements and to address open questions related to nanocrystal emission. We place nanocrystals at different distances from a gold reflector to affect radiative rates through variations in the local density of optical states. We apply this approach to spherical CdSe-based nanocrystals to probe the radiative efficiency and polarization properties of the lowest dark and bright excitons by analyzing temperature-dependent emission dynamics. For CdSe-based nanoplatelets, we identify the charge-carrier trapping mechanism responsible for strongly delayed emission. Our method, when combined with careful modeling of the influence of the nanophotonic environment on the relaxation dynamics, offers a versatile strategy to disentangle the complex excited-state decay pathways present in fluorescent nanocrystals as well as other emitters.

17.
ACS Photonics ; 9(4): 1366-1374, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35480490

ABSTRACT

Materials with temperature-dependent luminescence can be used as local thermometers when incorporated in, for example, a biological environment or chemical reactor. Researchers have continuously developed new materials aiming for the highest sensitivity of luminescence to temperature. Although the comparison of luminescent materials based on their temperature sensitivity is convenient, this parameter gives an incomplete description of the potential performance of the materials in applications. Here, we demonstrate how the precision of a temperature measurement with luminescent nanocrystals depends not only on the temperature sensitivity of the nanocrystals but also on their luminescence strength compared to measurement noise and background signal. After first determining the noise characteristics of our instrumentation, we show how the uncertainty of a temperature measurement can be predicted quantitatively. Our predictions match the temperature uncertainties that we extract from repeated measurements, over a wide temperature range (303-473 K), for different CCD readout settings, and for different background levels. The work presented here is the first study that incorporates all of these practical issues to accurately calculate the uncertainty of luminescent nanothermometers. This method will be important for the optimization and development of luminescent nanothermometers.

18.
ACS Nanosci Au ; 2(2): 111-118, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35481224

ABSTRACT

Many phosphor materials rely on energy transfer (ET) between optically active dopant ions. Typically, a donor species absorbs light of one color and transfers the energy to an acceptor species that emits light of a different color. For many applications, it is beneficial, or even crucial, that the phosphor is of nanocrystalline nature. Much unlike the widely recognized finite-size effects on the optical properties of quantum dots, the behavior of optically active ions is generally assumed to be independent of the size or shape of the optically inactive host material. Here, we demonstrate that ET between optically active dopants is also impacted by finite-size effects: Donor ions close to the surface of a nanocrystal (NC) are likely to have fewer acceptors in proximity compared to donors in a bulk-like coordination. As such, the rate and efficiency of ET in nanocrystalline phosphors are low in comparison to that of their bulk counterparts. Surprisingly, these undesired finite-size effects should be considered already for NCs with diameters as large as 12 nm. If we suppress radiative decay of the donor by embedding the NCs in media with low refractive indices, we can compensate for finite-size effects on the ET rate. Experimentally, we demonstrate these finite-size effects and how to compensate for them in YPO4 NCs co-doped with Tb3+ and Yb3+.

19.
J Am Chem Soc ; 144(18): 8096-8105, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35482030

ABSTRACT

The growth of two-dimensional platelets of the CdX family (X = S, Se, or Te) in an organic solvent requires the presence of both long- and short-chain ligands. This results in nanoplatelets of atomically precise thickness and long-chain ligand-stabilized Cd top and bottom surfaces. The platelets show a bright and spectrally pure luminescence. Despite the enormous interest in CdX platelets for optoelectronics, the growth mechanism is not fully understood. Riedinger et al. studied the reaction without a solvent and showed the favorable role for short-chain carboxylates for growth in two dimensions. Their model, based on the total energy of island nucleation, shows favored side facet growth versus growth on the top and bottom surfaces. However, several aspects of the synthesis under realistic conditions are not yet understood: Why are both short- and long-chain ligands required to obtain platelets? Why does the synthesis result in both isotropic nanocrystals and platelets? At which stage of the reaction is there bifurcation between isotropic and 2D growth? Here, we report an in situ study of the CdSe nanoplatelet reaction under practical synthesis conditions. We show that without short-chain ligands, both isotropic and mini-nanoplatelets form in the early stage of the process. However, most remaining precursors are consumed in isotropic growth. Addition of acetate induces a dramatic shift toward nearly exclusive 2D growth of already existing mini-nanoplatelets. Hence, although myristate stabilizes mini-nanoplatelets, mature nanoplatelets only grow by a subtle interplay between myristate and acetate, the latter catalyzes fast lateral growth of the side facets of the mini-nanoplatelets.


Subject(s)
Cadmium Compounds , Selenium Compounds , Acetates , Cadmium Compounds/chemistry , Ligands , Myristates , Myristic Acid , Selenium Compounds/chemistry , Solvents , Spectrum Analysis , X-Rays
20.
Angew Chem Int Ed Engl ; 61(5): e202114388, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34788496

ABSTRACT

The development of improved zeolite materials for applications in separation and catalysis requires understanding of mass transport. Herein, diffusion of single molecules is tracked in the straight and sinusoidal channels of the industrially relevant ZSM-5 zeolites using a combination of single-molecule localization microscopy and uniformly oriented zeolite thin films. Distinct motion behaviors are observed in zeolite channels with the same geometry, suggesting heterogeneous guest-host interactions. Quantification of the diffusion heterogeneities in the sinusoidal and straight channels suggests that the geometry of zeolite channels dictates the mobility and motion behavior of the guest molecules, resulting in diffusion anisotropy. The study of hierarchical zeolites shows that the addition of secondary pore networks primarily enhances the diffusivity of sinusoidal zeolite channels, and thus alleviating the diffusion limitations of microporous zeolites.

SELECTION OF CITATIONS
SEARCH DETAIL
...