Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Theriogenology ; 205: 1-8, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37084499

ABSTRACT

Postmortem and pre-euthanasia oocyte retrieval provides the last opportunity to preserve the genetic material in mares. Pentobarbital (PB) is the most common euthanasia agent; however, its effect on the developmental competence of oocytes has not been determined. Here, we evaluated the concentration of PB in equine follicular fluid (FF) and investigated its effect on the developmental competence of oocytes using a bovine IVF model to overcome the low availability of equine oocytes. The concentration of PB was measured by gas-chromatography/mass-spectrometry in FF collected from mare ovaries immediately after euthanasia (n = 10), 24 h post-euthanasia (n = 10), and from the ovaries collected by ovariectomy (negative control; n = 10). The serum concentration of PB was also evaluated as a positive control. PB was detected in all FF samples with an average concentration of 56.5 µg/ml. Next, bovine cumulus-oocyte complexes (COC) were held in holding media with PB for 6 h at 60 µg/ml (H60, n = 196), 164 µg/ml (H164, n = 215) or without PB (control; n = 212). After holding, the oocytes were matured and fertilized in vitro, followed by in vitro culture to the blastocyst stage. The cumulus expansion grade, cleavage rate, blastocyst rate, embryo kinetic rate and the blastocyst cell numbers were compared among the experimental groups of bovine COC. Higher rates of Grade 1 cumulus expansion were found in controls (54%, 32-76%; median, min-max) in comparison to H60 and H164 (24%,11-33% and 13%, 8-44%; P < 0.001). The cleavage rate was higher in the controls than in H164 (64% vs. 44%; P < 0.01). Blastocyst rates (blastocyst/cleaved oocytes) and total cell number were not different among the groups (control 29%, H60 25%, and H164 24%). In a preliminary study, equine oocytes (n = 28) were exposed to PB in vitro for 6 h followed by intracytoplasmic sperm injection (ICSI) and in vitro embryo production. Exposed oocytes showed a numerically lower maturation rate (43% Vs 52%; P > 0.05) in comparison to the laboratory-established rate during the same timepoints. Overall, we showed that PB reaches the FF immediately after euthanasia, exposing oocytes to this drug. This exposure affected cumulus expansion and cleavage rates in a bovine model, suggesting initial damage caused by PB that may not completely impede the formation of embryos, although lower overall embryo numbers might be obtained.


Subject(s)
Pentobarbital , Semen , Animals , Horses , Female , Male , Cattle , Pentobarbital/pharmacology , Euthanasia, Animal , Oocytes , Embryo, Mammalian , Blastocyst , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Fertilization in Vitro/veterinary
2.
Cancer Lett ; 557: 216090, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36773796

ABSTRACT

Bis(monoacylglycero)phosphates (BMPs), a class of lipids highly enriched within endolysosomal organelles, are key components of the lysosomal intraluminal vesicles responsible for activating sphingolipid catabolic enzymes. While BMPs are understudied relative to other phospholipids, recent reports associate BMP dysregulation with a variety of pathological states including neurodegenerative diseases and lysosomal storage disorders. Since the dramatic lysosomal remodeling characteristic of cellular transformation could impact BMP abundance and function, we employed untargeted lipidomics approaches to identify and quantify BMP species in several in vitro and in vivo models of breast cancer and comparative non-transformed cells and tissues. We observed lower BMP levels within transformed cells relative to normal cells, and consistent enrichment of docosahexaenoic acid (22:6) fatty acyl chain-containing BMP species in both human- and mouse-derived mammary tumorigenesis models. Our functional analysis points to a working model whereby 22:6 BMPs serve as reactive oxygen species scavengers in tumor cells, protecting lysosomes from oxidant-induced lysosomal membrane permeabilization. Our findings suggest that breast tumor cells might divert polyunsaturated fatty acids into BMP lipids as part of an adaptive response to protect their lysosomes from elevated reactive oxygen species levels, and raise the possibility that BMP-mediated lysosomal protection is a tumor-specific vulnerability that may be exploited therapeutically.


Subject(s)
Breast Neoplasms , Docosahexaenoic Acids , Animals , Mice , Humans , Female , Breast Neoplasms/pathology , Phosphates/metabolism , Reactive Oxygen Species/metabolism , Lysophospholipids/metabolism , Lysosomes/metabolism
3.
Cells ; 11(16)2022 08 13.
Article in English | MEDLINE | ID: mdl-36010592

ABSTRACT

Altered lipid metabolism is a hallmark of cancer. p73, a p53 family member, regulates cellular processes and is expressed as multiple isoforms. However, the role of p73 in regulating lipid metabolism is not well-characterized. Previously, we found that loss of p73 exon 12 (E12) leads to an isoform switch from p73α to p73α1, the latter of which has strong tumor suppressive activity. In this study, comprehensive untargeted metabolomics was performed to determine whether p73α1 alters lipid metabolism in non-small cell lung carcinoma cells. RNA-seq and molecular biology approaches were combined to identify lipid metabolism genes altered upon loss of E12 and identify a direct target of p73α1. We found that loss of E12 leads to decreased levels of phosphatidylcholines, and this was due to decreased expression of genes involved in phosphatidylcholine synthesis. Additionally, we found that E12-knockout cells had increased levels of phosphatidylcholines containing saturated fatty acids (FAs) and decreased levels of phosphatidylcholines containing monounsaturated fatty acids (MUFAs). We then found that p73α1 inhibits cancer cell viability through direct transcriptional suppression of Stearoyl-CoA Desaturase-1 (SCD1), which converts saturated FAs to MUFAs. Finally, we showed that p73α1-mediated suppression of SCD1 leads to increased ratios of saturated FAs to MUFAs.


Subject(s)
Lipid Metabolism , Neoplasms , Fatty Acids/metabolism , Fatty Acids, Monounsaturated/metabolism , Phosphatidylcholines , Protein Isoforms/metabolism , Stearoyl-CoA Desaturase
4.
Nat Commun ; 12(1): 6021, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654818

ABSTRACT

The mammalian brain relies on neurochemistry to fulfill its functions. Yet, the complexity of the brain metabolome and its changes during diseases or aging remain poorly understood. Here, we generate a metabolome atlas of the aging wildtype mouse brain from 10 anatomical regions spanning from adolescence to old age. We combine data from three assays and structurally annotate 1,547 metabolites. Almost all metabolites significantly differ between brain regions or age groups, but not by sex. A shift in sphingolipid patterns during aging related to myelin remodeling is accompanied by large changes in other metabolic pathways. Functionally related brain regions (brain stem, cerebrum and cerebellum) are also metabolically similar. In cerebrum, metabolic correlations markedly weaken between adolescence and adulthood, whereas at old age, cross-region correlation patterns reflect decreased brain segregation. We show that metabolic changes can be mapped to existing gene and protein brain atlases. The brain metabolome atlas is publicly available ( https://mouse.atlas.metabolomics.us/ ) and serves as a foundation dataset for future metabolomic studies.


Subject(s)
Aging/metabolism , Brain/metabolism , Metabolome , Animals , Cerebellum/metabolism , Female , Male , Metabolic Networks and Pathways , Metabolomics , Mice , Sphingolipids
5.
Brain Behav ; 11(5): e02146, 2021 05.
Article in English | MEDLINE | ID: mdl-33838015

ABSTRACT

INTRODUCTION: Dimethyl sulfoxide (DMSO) is a widely used solvent to dissolve hydrophobic substances for clinical uses and experimental in vivo purposes. While usually regarded safe, our prior studies suggest changes to behavior following DMSO exposure. We therefore evaluated the effects of a five-day, short-term exposure to DMSO on postnatal infant rats (P6-10). METHODS: DMSO was intraperitoneally injected for five days at 0.2, 2.0, and 4.0 ml/kg body mass. One cohort of animals was sacrificed 24 hr after DMSO exposure to analyze the neurometabolic changes in four brain regions (cortex, hippocampus, basal ganglia, and cerebellum) by hydrophilic interaction liquid chromatography. A second cohort of animals was used to analyze chronic alterations to behavior and pathological changes to glia and neuronal cells later in life (P21-P40). RESULTS: 164 metabolites, including key regulatory molecules (retinoic acid, orotic acid, adrenic acid, and hypotaurine), were found significantly altered by DMSO exposure in at least one of the brain regions at P11 (p < .05). Behavioral tests showed significant hypoactive behavior and decreased social habits to the 2.0 and 4.0 ml DMSO/kg groups (p < .01). Significant increases in number of microglia and astrocytes at P40 were observed in the 4.0 ml DMSO/kg group (at p < .015.) CONCLUSIONS: Despite short-term exposure at low, putatively nontoxic concentrations, DMSO led to changes in behavior and social preferences, chronic alterations in glial cells, and changes in essential regulatory brain metabolites. The chronic neurological effects of DMSO exposure reported here raise concerns about its neurotoxicity and consequent safety in human medical applications and clinical trials.


Subject(s)
Dimethyl Sulfoxide , Neurochemistry , Animals , Brain , Rats , Rats, Long-Evans , Social Interaction
6.
Nature ; 589(7842): 474-479, 2021 01.
Article in English | MEDLINE | ID: mdl-33299186

ABSTRACT

The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals1. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine-like those of other psychedelic compounds-are long-lasting2, which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling3,4. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog-a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.


Subject(s)
Behavior, Addictive/drug therapy , Drug Design , Ibogaine/analogs & derivatives , Ibogaine/adverse effects , Alcoholism/drug therapy , Animals , Antidepressive Agents/pharmacology , Arrhythmias, Cardiac/chemically induced , Chemistry Techniques, Synthetic , Depression/drug therapy , Disease Models, Animal , Female , Hallucinogens/adverse effects , Heroin Dependence/drug therapy , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity/drug effects , Patient Safety , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Substance-Related Disorders/drug therapy , Swimming , Tabernaemontana/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL