Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1239713, 2023.
Article in English | MEDLINE | ID: mdl-37546257
2.
Front Plant Sci ; 14: 1157933, 2023.
Article in English | MEDLINE | ID: mdl-36938034

ABSTRACT

[This corrects the article DOI: 10.3389/fpls.2022.958350.].

3.
Front Plant Sci ; 13: 958350, 2022.
Article in English | MEDLINE | ID: mdl-36247549

ABSTRACT

If food and feed production are to keep up with world demand in the face of climate change, continued progress in understanding and utilizing both genetic and epigenetic sources of crop variation is necessary. Progress in plant breeding has traditionally been thought to be due to selection for spontaneous DNA sequence mutations that impart desirable phenotypes. These spontaneous mutations can expand phenotypic diversity, from which breeders can select agronomically useful traits. However, it has become clear that phenotypic diversity can be generated even when the genome sequence is unaltered. Epigenetic gene regulation is a mechanism by which genome expression is regulated without altering the DNA sequence. With the development of high throughput DNA sequencers, it has become possible to analyze the epigenetic state of the whole genome, which is termed the epigenome. These techniques enable us to identify spontaneous epigenetic mutations (epimutations) with high throughput and identify the epimutations that lead to increased phenotypic diversity. These epimutations can create new phenotypes and the causative epimutations can be inherited over generations. There is evidence of selected agronomic traits being conditioned by heritable epimutations, and breeders may have historically selected for epiallele-conditioned agronomic traits. These results imply that not only DNA sequence diversity, but the diversity of epigenetic states can contribute to increased phenotypic diversity. However, since the modes of induction and transmission of epialleles and their stability differ from that of genetic alleles, the importance of inheritance as classically defined also differs. For example, there may be a difference between the types of epigenetic inheritance important to crop breeding and crop production. The former may depend more on longer-term inheritance whereas the latter may simply take advantage of shorter-term phenomena. With the advances in our understanding of epigenetics, epigenetics may bring new perspectives for crop improvement, such as the use of epigenetic variation or epigenome editing in breeding. In this review, we will introduce the role of epigenetic variation in plant breeding, largely focusing on DNA methylation, and conclude by asking to what extent new knowledge of epigenetics in crop breeding has led to documented cases of its successful use.

4.
Front Plant Sci ; 12: 708286, 2021.
Article in English | MEDLINE | ID: mdl-34531883

ABSTRACT

The low phytic acid (lpa) trait in soybeans can be conferred by loss-of-function mutations in genes encoding myo-inositol phosphate synthase and two epistatically interacting genes encoding multidrug-resistance protein ATP-binding cassette (ABC) transporters. However, perturbations in phytic acid biosynthesis are associated with poor seed vigor. Since the benefits of the lpa trait, in terms of end-use quality and sustainability, far outweigh the negatives associated with poor seed performance, a fuller understanding of the molecular basis behind the negatives will assist crop breeders and engineers in producing variates with lpa and better germination rate. The gene regulatory network (GRN) for developing low and normal phytic acid soybean seeds was previously constructed, with genes modulating a variety of processes pertinent to phytic acid metabolism and seed viability being identified. In this study, a comparative time series analysis of low and normal phytic acid soybeans was carried out to investigate the transcriptional regulatory elements governing the transitional dynamics from dry seed to germinated seed. GRNs were reverse engineered from time series transcriptomic data of three distinct genotypic subsets composed of lpa soybean lines and their normal phytic acid sibling lines. Using a robust unsupervised network inference scheme, putative regulatory interactions were inferred for each subset of genotypes. These interactions were further validated by published regulatory interactions found in Arabidopsis thaliana and motif sequence analysis. Results indicate that lpa seeds have increased sensitivity to stress, which could be due to changes in phytic acid levels, disrupted inositol phosphate signaling, disrupted phosphate ion (Pi) homeostasis, and altered myo-inositol metabolism. Putative regulatory interactions were identified for the latter two processes. Changes in abscisic acid (ABA) signaling candidate transcription factors (TFs) putatively regulating genes in this process were identified as well. Analysis of the GRNs reveal altered regulation in processes that may be affecting the germination of lpa soybean seeds. Therefore, this work contributes to the ongoing effort to elucidate molecular mechanisms underlying altered seed viability, germination and field emergence of lpa crops, understanding of which is necessary in order to mitigate these problems.

5.
Plant Foods Hum Nutr ; 75(4): 651-655, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33099715

ABSTRACT

The Japanese traditional fermented soybean or "natto", a cheap and nutrient-rich food, is very popular in Japan. The low-phytate (LP) soybeans exhibit higher mineral bioavailability; however, their use in preparing natto has not been reported. Therefore, in this study, characteristics and quality of natto prepared using LP soybean were investigated. The findings revealed a better color, lower stickiness, and lower hardness and taste of LP natto with lower phytate and higher inorganic phosphorus (Pi) concentrations than those in the normal-phytate (NP) natto. However, the Ca, Mg, and K concentrations were not significantly different between LP and NP natto, whereas the protein level in NP natto was slightly higher than that in LP natto. These findings indicate that the lower phytate content in LP natto than that in NP natto, could facilitate a higher bioavailability of P and other minerals. Moreover, the improved color and lower stickiness, in addition to lower hardness and taste of LP natto, imparted through improved manufacturing process could increase its acceptability overseas, thereby increasing its commercial value. These improved qualities of LP natto could contribute to improving human health as well as increasing sustainable food and nutrient security.


Subject(s)
Soy Foods , Humans , Japan , Phytic Acid , Glycine max , Taste
6.
PLoS One ; 15(6): e0235120, 2020.
Article in English | MEDLINE | ID: mdl-32584851

ABSTRACT

Two low-phytate soybean (Glycine max (L.) Merr.) mutant lines- V99-5089 (mips mutation on chromosome 11) and CX-1834 (mrp-l and mrp-n mutations on chromosomes 19 and 3, respectively) have proven to be valuable resources for breeding of low-phytate, high-sucrose, and low-raffinosaccharide soybeans, traits that are highly desirable from a nutritional and environmental standpoint. A recombinant inbred population derived from the cross CX1834 x V99-5089 provides an opportunity to study the effect of different combinations of these three mutations on soybean phytate and oligosaccharides levels. Of the 173 recombinant inbred lines tested, 163 lines were homozygous for various combinations of MIPS and two MRP loci alleles. These individuals were grouped into eight genotypic classes based on the combination of SNP alleles at the three mutant loci. The two genotypic classes that were homozygous mrp-l/mrp-n and either homozygous wild-type or mutant at the mips locus (MIPS/mrp-l/mrp-n or mips/mrp-l/mrp-n) displayed relatively similar ~55% reductions in seed phytate, 6.94 mg g -1 and 6.70 mg g-1 respectively, as compared with 15.2 mg g-1 in the wild-type MIPS/MRP-L/MRP-N seed. Therefore, in the presence of the double mutant mrp-l/mrp-n, the mips mutation did not cause a substantially greater decrease in seed phytate level. However, the nutritionally-desirable high-sucrose/low-stachyose/low-raffinose seed phenotype originally observed in soybeans homozygous for the mips allele was reversed in the presence of mrp-l/mrp-n mutations: homozygous mips/mrp-l/mrp-n seed displayed low-sucrose (7.70%), high-stachyose (4.18%), and the highest observed raffinose (0.94%) contents per gram of dry seed. Perhaps the block in phytic acid transport from its cytoplasmic synthesis site to its storage site, conditioned by mrp-l/mrp-n, alters myo-inositol flux in mips seeds in a way that restores to wild-type levels the mips conditioned reductions in raffinosaccharides. Overall this study determined the combinatorial effects of three low phytic acid causing mutations on regulation of seed phytate and oligosaccharides in soybean.


Subject(s)
Genetic Loci , Glycine max , Mutation , Oligosaccharides , Phytic Acid/metabolism , Seeds , Oligosaccharides/genetics , Oligosaccharides/metabolism , Seeds/genetics , Seeds/metabolism , Glycine max/genetics , Glycine max/metabolism
7.
Plant Physiol Biochem ; 149: 225-232, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32086159

ABSTRACT

Understanding the influence of the valuable "low-phytate" trait on soybean seedling growth, physiology, and biochemistry will facilitate its future exploitation. The aim was to elucidate the physiological and biochemical characteristics of low-phytate (LP) soybean at the seedling stage. To this end, seed P and mineral content and seedling dry weight, carbon (C) and nitrogen (N) accumulation, nitrogen fixation, and root and nodule phytase and phosphatase activity levels were measured at 21 d after sowing LP and normal-phytate (NP) soybean lines. Seedling dry weight, and C and N accumulation were 31%, 38% and 54% higher, respectively, in the LP line than the NP line. The total and specific nitrogen fixation levels in the LP nodules were 46% and 78% higher, respectively, than those in the NP nodules. The phytase, phosphatase, and specific phytase levels were 1.4-folds, 1.3-folds, and 1.3-folds higher, respectively, in the LP roots than the NP roots. The phosphatase and specific phosphatase levels in LP nodules were 1.5-folds and 1.3-folds higher, respectively, than those in the NP nodules. The mineral levels were substantially higher in the LP seeds and seedings than in those of the NP line. The HCl extractabilities of P, S, Fe, Cu and Mn were higher in the LP seeds than the NP seeds. These results indicate that the LP line presented with superior seedling growth and nitrogen fixation relative to the NP line. The LP line had relatively higher root phytase and root and nodule phosphatase activity levels than the NP line and could, therefore, be better suited and more readily adapt to low P conditions.


Subject(s)
6-Phytase , Glycine max , Seedlings , 6-Phytase/metabolism , Breeding , Nitrogen Fixation , Phosphoric Monoester Hydrolases/metabolism , Phytic Acid/metabolism , Plant Roots/enzymology , Root Nodules, Plant/enzymology , Seedlings/enzymology , Seedlings/growth & development , Glycine max/enzymology , Glycine max/growth & development
8.
Plants (Basel) ; 9(2)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979164

ABSTRACT

The low phytic acid (lpa), or "low-phytate" seed trait can provide numerous potential benefits to the nutritional quality of foods and feeds and to the sustainability of agricultural production. Major benefits include enhanced phosphorus (P) management contributing to enhanced sustainability in non-ruminant (poultry, swine, and fish) production; reduced environmental impact due to reduced waste P in non-ruminant production; enhanced "global" bioavailability of minerals (iron, zinc, calcium, magnesium) for both humans and non-ruminant animals; enhancement of animal health, productivity and the quality of animal products; development of "low seed total P" crops which also can enhance management of P in agricultural production and contribute to its sustainability. Evaluations of this trait by industry and by advocates of biofortification via breeding for enhanced mineral density have been too short term and too narrowly focused. Arguments against breeding for the low-phytate trait overstate the negatives such as potentially reduced yields and field performance or possible reductions in phytic acid's health benefits. Progress in breeding or genetically-engineering high-yielding stress-tolerant low-phytate crops continues. Perhaps due to the potential benefits of the low-phytate trait, the challenge of developing high-yielding, stress-tolerant low-phytate crops has become something of a holy grail for crop genetic engineering. While there are widely available and efficacious alternative approaches to deal with the problems posed by seed-derived dietary phytic acid, such as use of the enzyme phytase as a feed additive, or biofortification breeding, if there were an interest in developing low-phytate crops with good field performance and good seed quality, it could be accomplished given adequate time and support. Even with a moderate reduction in yield, in light of the numerous benefits of low-phytate types as human foods or animal feeds, should one not grow a nutritionally-enhanced crop variant that perhaps has 5% to 10% less yield than a standard variant but one that is substantially more nutritious? Such crops would be a benefit to human nutrition especially in populations at risk for iron and zinc deficiency, and a benefit to the sustainability of agricultural production.

10.
Plants (Basel) ; 8(5)2019 May 08.
Article in English | MEDLINE | ID: mdl-31071932

ABSTRACT

Crop seed phosphorus (P) is primarily stored in the form of phytate, which is generally indigestible by monogastric animals. Low-phytate soybean lines have been developed to solve various problems related to seed phytate. There is little information available on the effects of P fertilization on productivity, physiological characteristics, and seed yield and quality in low-phytate soybeans. To address this knowledge gap, studies were conducted with a low-phytate line and two normal-phytate cultivars from western Japan when grown under high- and low-P fertilization. The whole plant dry weight, leaf photosynthesis, dinitrogen fixation, and nodule dry weight at the flowering stage were higher in the higher P application level, but were not different between the low-phytate line and normal-phytate cultivars. As expected, seed yield was higher in the higher level of P application for all lines. Notably, it was higher in the low-phytate line as compared with the normal-phytate cultivars at both levels of fertilizer P. The total P concentration in the seeds of the low-phytate line was the same as that of the normal-phytate cultivars, but the phytate P concentration in the low-phytate line was about 50% less than that of the normal-phytate cultivars. As a result the molar ratio of phytic acid to Zn, Fe, Mn, and Cu in seed were also significantly lower in the low-phytate line. From these results, it can be concluded that growth after germination, leaf photosynthesis, nitrogen fixation, yield and seed quality were not less in the low-phytate soybean line as compared with two unrelated normal-phytate cultivars currently grown in Japan, and that low-phytate soybeans may improve the bioavailability of microelements.

11.
Nutr Rev ; 76(11): 793-804, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30010865

ABSTRACT

Plant-based diets in low-income countries (LICs) have a high content of phytic acid (myo-inositol hexaphosphate [InsP6]) and associated magnesium, potassium, and calcium salts. Together, InsP6 acid and its salts are termed "phytate" and are potent inhibitors of iron and zinc absorption. Traditional food processing can reduce the InsP6 content through loss of water-soluble phytate or through phytase hydrolysis to lower myo-inositol phosphate forms that no longer inhibit iron and zinc absorption. Hence, some processing practices can reduce the need for high-dose iron fortificants in plant-based diets and alleviate safety concerns. Dietary phytate-to-iron and phytate-to-zinc molar ratios are used to estimate iron and zinc bioavailability and to identify dietary iron and zinc requirements according to diet type. The European Food Safety Authority has set adult dietary zinc requirements for 4 levels of phytate intake, highlighting the urgent need for phytate food composition data. Such data will improve the ability to estimate the prevalence of inadequate zinc intakes in vulnerable groups in LICs, which will facilitate implementation of targeted policies to alleviate zinc deficiency.


Subject(s)
Iron, Dietary/pharmacokinetics , Nutritional Requirements/drug effects , Phytic Acid/pharmacology , Plants, Edible/chemistry , Zinc/pharmacokinetics , Adult , Biological Availability , Developing Countries , Diet/methods , Female , Food Handling , Humans , Male , Nutrition Policy , Nutritional Status
12.
Front Plant Sci ; 8: 2029, 2017.
Article in English | MEDLINE | ID: mdl-29250090

ABSTRACT

A dominant loss of function mutation in myo-inositol phosphate synthase (MIPS) gene and recessive loss of function mutations in two multidrug resistant protein type-ABC transporter genes not only reduce the seed phytic acid levels in soybean, but also affect the pathways associated with seed development, ultimately resulting in low emergence. To understand the regulatory mechanisms and identify key genes that intervene in the seed development process in low phytic acid crops, we performed computational inference of gene regulatory networks in low and normal phytic acid soybeans using a time course transcriptomic data and multiple network inference algorithms. We identified a set of putative candidate transcription factors and their regulatory interactions with genes that have functions in myo-inositol biosynthesis, auxin-ABA signaling, and seed dormancy. We evaluated the performance of our unsupervised network inference method by comparing the predicted regulatory network with published regulatory interactions in Arabidopsis. Some contrasting regulatory interactions were observed in low phytic acid mutants compared to non-mutant lines. These findings provide important hypotheses on expression regulation of myo-inositol metabolism and phytohormone signaling in developing low phytic acid soybeans. The computational pipeline used for unsupervised network learning in this study is provided as open source software and is freely available at https://lilabatvt.github.io/LPANetwork/.

13.
J Nutr ; 147(6): 1079-1085, 2017 06.
Article in English | MEDLINE | ID: mdl-28424260

ABSTRACT

Background: Estimated physiologic requirements (PRs) for zinc increase in late pregnancy and early lactation, but the effect on dietary zinc requirements is uncertain.Objective: The aim of this study was to determine changes in daily fractional absorbed zinc and total absorbed zinc (TAZ) from ad libitum diets of differing phytate contents in relation to physiologic zinc requirements during pregnancy and lactation.Methods: This was a prospective observational study of zinc absorption at 8 (phase 1) and 34 (phase 2) wk of gestation and 2 (phase 3) and 6 (phase 4) mo of lactation. Participants were indigenous Guatemalan women of childbearing age whose major food staple was maize and who had been randomly assigned in a larger study to either of 2 ad libitum feeding groups: low-phytate maize (LP; 1.6 mg/g; n = 14) or control maize (C; 7.1 mg/g; n = 8). Total dietary zinc (milligrams per day, TDZ) and phytate (milligrams per day) were determined from duplicate diets and fractional absorption (FAZ) by dual isotope ratio technique (TAZ = TDZ × FAZ). All variables were examined longitudinally and by group and compared with PRs. TAZ values at later phases were compared with phase 1. Measured TAZ was compared with predicted TAZ for nonpregnant, nonlactating (NPNL) women.Results: TAZ was greater in the LP group than in the C group at all phases. All variables increased from phase 1 to phases 2 and 3 and declined at phase 4. TAZ increased by 1.25 mg/d (P = 0.045) in the C group and by 0.81 mg/d (P = 0.058) in the LP group at phase 2. At phase 3, the increases were 2.66 mg/d (P = 0.002) in the C group and 2.28 mg/d (P = 0.0004) in the LP group, compared with a 1.37-mg/d increase in PR. Measured TAZ was greater than predicted values in phases 2-4.Conclusions: Upregulation of zinc absorption in late pregnancy and early lactation matches increases in PRs of pregnant and lactating women, regardless of dietary phytate, which has implications for dietary zinc requirements of pregnant and lactating women.


Subject(s)
Diet , Gestational Age , Intestinal Absorption , Lactation , Nutritional Requirements , Phytic Acid/administration & dosage , Zinc/metabolism , Adult , Biological Availability , Double-Blind Method , Female , Guatemala , Humans , Indians, Central American , Lactation/physiology , Longitudinal Studies , Nutritional Status , Phytic Acid/adverse effects , Pregnancy , Pregnancy Complications , Pregnancy Trimester, Third , Prospective Studies , Up-Regulation , Zea mays/chemistry , Zinc/deficiency
14.
Sci Data ; 2: 150036, 2015.
Article in English | MEDLINE | ID: mdl-26217490

ABSTRACT

One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients.


Subject(s)
Carbon Dioxide , Crops, Agricultural , Food , Agriculture , Carbon Dioxide/adverse effects , Climate Change , Plants, Edible
15.
Plants (Basel) ; 4(2): 225-39, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-27135325

ABSTRACT

The potential benefits of the low phytic acid (lpa) seed trait for human and animal nutrition, and for phosphorus management in non-ruminant animal production, are well documented. However, in many cases the lpa trait is associated with impaired seed or plant performance, resulting in reduced yield. This has given rise to the perception that the lpa trait is tightly correlated with reduced yield in diverse crop species. Here we report a powerful test of this correlation. We measured grain yield in lines homozygous for each of six barley (Hordeum vulgare L.) lpa mutations that greatly differ in their seed phytic acid levels. Performance comparisons were between sibling wild-type and mutant lines obtained following backcrossing, and across two years in five Idaho (USA) locations that greatly differ in crop yield potential. We found that one lpa mutation (Hvlpa1-1) had no detectable effect on yield and a second (Hvlpa4-1) resulted in yield losses of only 3.5%, across all locations. When comparing yields in three relatively non-stressful production environments, at least three lpa mutations (Hvlpa1-1, Hvlpa3-1, and Hvlpa4-1) typically had yields similar to or within 5% of the wild-type sibling isoline. Therefore in the case of barley, lpa mutations can be readily identified that when simply incorporated into a cultivar result in adequately performing lines, even with no additional breeding for performance within the lpa line. In conclusion, while some barley lpa mutations do impact field performance, a substantial fraction appears to have little or no effect on yield.

16.
Plant J ; 80(4): 642-53, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25231822

ABSTRACT

Inositol pyrophosphates are unique cellular signaling molecules with recently discovered roles in energy sensing and metabolism. Studies in eukaryotes have revealed that these compounds have a rapid turnover, and thus only small amounts accumulate. Inositol pyrophosphates have not been the subject of investigation in plants even though seeds produce large amounts of their precursor, myo-inositol hexakisphosphate (InsP6 ). Here, we report that Arabidopsis and maize InsP6 transporter mutants have elevated levels of inositol pyrophosphates in their seed, providing unequivocal identification of their presence in plant tissues. We also show that plant seeds store a little over 1% of their inositol phosphate pool as InsP7 and InsP8 . Many tissues, including, seed, seedlings, roots and leaves accumulate InsP7 and InsP8 , thus synthesis is not confined to tissues with high InsP6 . We have identified two highly similar Arabidopsis genes, AtVip1 and AtVip2, which are orthologous to the yeast and mammalian VIP kinases. Both AtVip1 and AtVip2 encode proteins capable of restoring InsP7 synthesis in yeast mutants, thus AtVip1 and AtVip2 can function as bonafide InsP6 kinases. AtVip1 and AtVip2 are differentially expressed in plant tissues, suggesting non-redundant or non-overlapping functions in plants. These results contribute to our knowledge of inositol phosphate metabolism and will lay a foundation for understanding the role of InsP7 and InsP8 in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Inositol Phosphates/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Seeds/metabolism , Transcription Factors, General/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromatography, High Pressure Liquid , Genetic Complementation Test , Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Phosphate Group Acceptor)/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors, General/genetics , Yeasts/genetics , Zea mays/genetics , Zea mays/metabolism
17.
J Hered ; 105(5): 656-65, 2014.
Article in English | MEDLINE | ID: mdl-25080466

ABSTRACT

Inositol hexaphosphate (Ins P6 or "phytic acid") typically accounts for 75 (± 10%) of seed total phosphorus (P). In some cases, genetic blocks in seed Ins P6 accumulation can also alter the distribution or total amount of seed P. In nonmutant barley (Hordeum vulgare L.) caryopses, ~80% of Ins P6 and total P accumulate in the aleurone layer, the outer layer of the endosperm, with the remainder in the germ. In barley low phytic acid 1-1 (Hvlpa1-1) seed, both endosperm Ins P6 and total P are reduced (~45% and ~25%, respectively), but germs are phenotypically wild type. This translates into a net reduction in whole-seed total P of ~15%. Nutrient culture studies demonstrate that the reduction in endosperm total P is not due to a reduction in the uptake of P into the maternal plant. Genetic tests (analyses of testcross and F2 seed) reveal that the Hvlpa1-1 genotype of the filial seed conditions the seed total P reduction; sibling seed in the same head of barley that differ in their Hvlpa1-1 genotype (heterozygous vs. homozygous recessive) differ in their total P (normal vs. reduced, respectively). Therefore, Hvlpa1 functions as a seed-specific or filial determinant of barley endosperm total P.


Subject(s)
Endosperm/chemistry , Hordeum/genetics , Phosphorus/chemistry , Phytic Acid/chemistry , Genotype , Hordeum/chemistry
18.
Nature ; 510(7503): 139-42, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24805231

ABSTRACT

Dietary deficiencies of zinc and iron are a substantial global public health problem. An estimated two billion people suffer these deficiencies, causing a loss of 63 million life-years annually. Most of these people depend on C3 grains and legumes as their primary dietary source of zinc and iron. Here we report that C3 grains and legumes have lower concentrations of zinc and iron when grown under field conditions at the elevated atmospheric CO2 concentration predicted for the middle of this century. C3 crops other than legumes also have lower concentrations of protein, whereas C4 crops seem to be less affected. Differences between cultivars of a single crop suggest that breeding for decreased sensitivity to atmospheric CO2 concentration could partly address these new challenges to global health.


Subject(s)
Carbon Dioxide/pharmacology , Crops, Agricultural/chemistry , Crops, Agricultural/drug effects , Nutritional Status , Nutritive Value/drug effects , Public Health/trends , Air/analysis , Atmosphere/chemistry , Australia , Breeding , Carbon Dioxide/analysis , Crops, Agricultural/metabolism , Diet , Edible Grain/chemistry , Edible Grain/drug effects , Edible Grain/metabolism , Fabaceae/chemistry , Fabaceae/drug effects , Fabaceae/metabolism , Global Health/trends , Humans , Iron/analysis , Iron/metabolism , Iron Deficiencies , Japan , Photosynthesis/drug effects , Phytic Acid/analysis , Phytic Acid/metabolism , United States , Zinc/analysis , Zinc/deficiency , Zinc/metabolism
19.
Breed Sci ; 62(1): 87-92, 2012 Mar.
Article in English | MEDLINE | ID: mdl-23136518

ABSTRACT

Phytic acid (PA) is the storage form of phosphorus (P) in seeds and plays an important role in the nutritional quality of food crops. There is little information on the genetics of seed and seedling PA in mungbean [Vigna radiata (L.) Wilczek]. Quantitative trait loci (QTL) were identified for phytic acid P (PAP), total P (TP), and inorganic P (IP) in mungbean seeds and seedlings, and for flowering, maturity and seed weight, in an F(2) population developed from a cross between low PAP cultivated mungbean (V1725BG) and high PAP wild mungbean (AusTRCF321925). Seven QTLs were detected for P compounds in seed; two for PAP, four for IP and one for TP. Six QTLs were identified for P compounds in seedling; three for PAP, two for TP and one for IP. Only one QTL co-localized between P compounds in seed and seedling suggesting that low PAP seed and low PAP seedling must be selected for at different QTLs. Seed PAP and TP were positively correlated with days to flowering and maturity, indicating the importance of plant phenology to seed P content.

20.
Front Plant Sci ; 3: 195, 2012.
Article in English | MEDLINE | ID: mdl-22969784

ABSTRACT

Inorganic N is available to plants from the soil as ammonium [Formula: see text] and nitrate [Formula: see text]. We studied how wheat grown hydroponically to senescence in controlled environmental chambers is affected by N form ([Formula: see text] vs. [Formula: see text]) and CO(2) concentration ("subambient," "ambient," and "elevated") in terms of biomass, yield, and nutrient accumulation and partitioning. Wheat supplied with [Formula: see text] as a sole N source had the strongest response to CO(2) concentration. Plants exposed to subambient and ambient CO(2) concentrations typically had the greatest biomass and nutrient accumulation under both N forms. In general [Formula: see text]-supplied plants had higher concentrations of total N, P, K, S, Ca, Zn, Fe, and Cu, while [Formula: see text]-supplied plants had higher concentrations of Mg, B, Mn, and [Formula: see text][Formula: see text]-supplied plants contained amounts of phytate similar to [Formula: see text]-supplied plants but had higher bioavailable Zn, which could have consequences for human health. [Formula: see text]-supplied plants allocated more nutrients and biomass to aboveground tissues whereas [Formula: see text]-supplied plants allocated more nutrients to the roots. The two inorganic nitrogen forms influenced plant growth and nutrient status so distinctly that they should be treated as separate nutrients. Moreover, plant growth and nutrient status varied in a non-linear manner with atmospheric CO(2) concentration.

SELECTION OF CITATIONS
SEARCH DETAIL