Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800808

ABSTRACT

Plants are subject to different types of stress, which consequently affect their growth and development. They have developed mechanisms for recognizing and processing an extracellular signal. Second messengers are transient molecules that modulate the physiological responses in plant cells under stress conditions. In this sense, it has been shown in various plant models that membrane lipids are substrates for the generation of second lipid messengers such as phosphoinositide, phosphatidic acid, sphingolipids, and lysophospholipids. In recent years, research on lipid second messengers has been moving toward using genetic and molecular approaches to reveal the molecular setting in which these molecules act in response to osmotic stress. In this sense, these studies have established that second messengers can transiently recruit target proteins to the membrane and, therefore, affect protein conformation, activity, and gene expression. This review summarizes recent advances in responses related to the link between lipid second messengers and osmotic stress in plant cells.


Subject(s)
Lipids/physiology , Osmotic Pressure/physiology , Plants/metabolism , Second Messenger Systems/physiology , Calcium/metabolism , Glycolipids/physiology , Models, Biological , Phospholipids/physiology , Plant Proteins/metabolism , Salt Stress/physiology
2.
BMC Plant Biol ; 21(1): 62, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33494714

ABSTRACT

BACKGROUND: Mexico is considered the diversification center for chili species, but these crops are susceptible to infection by pathogens such as Colletotrichum spp., which causes anthracnose disease and postharvest decay in general. Studies have been carried out with isolated strains of Colletotrichum in Capsicum plants; however, under growing conditions, microorganisms generally interact with others, resulting in an increase or decrease of their ability to infect the roots of C. chinense seedlings and thus, cause disease. RESULTS: Morphological changes were evident 24 h after inoculation (hai) with the microbial consortium, which consisted primarily of C. ignotum. High levels of diacylglycerol pyrophosphate (DGPP) and phosphatidic acid (PA) were found around 6 hai. These metabolic changes could be correlated with high transcription levels of diacylglycerol-kinase (CchDGK1 and CchDG31) at 3, 6 and 12 hai and also to pathogen gene markers, such as CchPR1 and CchPR5. CONCLUSIONS: Our data constitute the first evidence for the phospholipids signalling events, specifically DGPP and PA participation in the phospholipase C/DGK (PI-PLC/DGK) pathway, in the response of Capsicum to the consortium, offering new insights on chilis' defense responses to damping-off diseases.


Subject(s)
Capsicum/immunology , Colletotrichum/physiology , Microbial Consortia/physiology , Phospholipids/metabolism , Plant Diseases/immunology , Plant Immunity , Signal Transduction , Capsicum/genetics , Capsicum/microbiology , Colletotrichum/isolation & purification , Diacylglycerol Kinase , Diphosphates/metabolism , Glycerol/analogs & derivatives , Glycerol/metabolism , Host-Pathogen Interactions , Phosphatidic Acids/metabolism , Phylogeny , Plant Diseases/microbiology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/microbiology , Seedlings/genetics , Seedlings/immunology , Seedlings/microbiology , Type C Phospholipases/metabolism
3.
Plant Physiol Biochem ; 49(2): 151-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21147536

ABSTRACT

The phospholipidic signal transduction system involves generation of second messengers by hydrolysis or changes in phosphorylation state. Several studies have shown that the signaling pathway forms part of plant response to phytoregulators such as salicylic acid (SA) and methyl jasmonate (MJ), which have been widely used to stimulate secondary metabolite production in cell cultures. An evaluation was made of the effect of SA and MJ on phospholipidic signaling and capsaicinoid production in Capsicum chinense Jacq. suspension cells. Treatment with SA inhibited phospholipase C (PLC) (EC: 3.1.4.3) and phospholipase D (PLD) (EC: 3.1.4.4) activities in vitro, but increased lipid kinase activities in vitro at different SA concentrations. Treatment with MJ produced increases in PLC and PLD activities, while lipid kinase activities were variable and dose-dependent. The production of vanillin, a precursor of capsaicinoids, increased at specific SA or MJ doses. Preincubation with neomycin, a phospholipase inhibitor, before SA or MJ treatment inhibits increase in vanillin production which suggests that phospholipidic second messengers may participate in the observed increase in vanillin production.


Subject(s)
Acetates/pharmacology , Benzaldehydes/metabolism , Capsicum/metabolism , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Phospholipids/metabolism , Salicylic Acid/pharmacology , Capsicum/drug effects , Capsicum/enzymology , Cells, Cultured , Phospholipase D/metabolism , Type C Phospholipases/metabolism
4.
J Inorg Biochem ; 103(11): 1497-503, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19740543

ABSTRACT

In acid soils, aluminium (Al) toxicity and phosphate (Pi) deficiency are the most significant constraints on plant growth. Al inhibits cell growth and disrupts signal transduction processes, thus interfering with metabolism of phospholipase C (PLC), an enzyme involved in second messenger production in the cell. Using a Coffea arabica suspension cell model, we demonstrate that cell growth inhibition by Al toxicity is mitigated at a high Pi concentration. Aluminium-induced cell growth inhibition may be due to culture medium Pi deficiency, since Pi forms complexes with Al, reducing Pi availability to cells. Phosphate does not mitigate inhibition of PLC activity by Al toxicity. Other enzymes of the phosphoinositide signal transduction pathway were also evaluated. Aluminium disrupts production of second messengers such as inositol 1,4,5-trisphosphate (IP(3)) and phosphatidic acid (PA) by blocking PLC activity; however, phospholipase D (PLD) and diacylglycerol kinase (DGK) activities are stimulated by Al, a response probably aimed at counteracting Al effects on PA formation. Phosphate deprivation also induces PLC and DGK activity. These results suggest that Al-induced cell growth inhibition is not linked to PLC activity inhibition.


Subject(s)
Aluminum/pharmacology , Coffea/drug effects , Phosphates/pharmacology , Signal Transduction/drug effects , Type C Phospholipases/metabolism , Aluminum/analysis , Cells, Cultured , Coffea/growth & development , Coffea/metabolism , Diacylglycerol Kinase/drug effects , Diacylglycerol Kinase/metabolism , Inositol 1,4,5-Trisphosphate/antagonists & inhibitors , Inositol 1,4,5-Trisphosphate/metabolism , Phosphatidic Acids/antagonists & inhibitors , Phosphatidic Acids/metabolism , Phospholipase D/drug effects , Phospholipase D/metabolism , Signal Transduction/physiology , Type C Phospholipases/antagonists & inhibitors
5.
Plant Physiol Biochem ; 43(9): 874-81, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16297634

ABSTRACT

Recent results, fundamentally obtained from animal tissues, suggest that polyamines (Pas), essential compounds for the growth and development of all life organisms, may interact with a signal transduction cascade. Because Pas are highly positive charged compounds, their binding with phospholipids involved in signal transduction is likely to be the case. In this work, the in vivo effect of Pas on some important components of phospholipid signal transduction pathway was studied, by the first time, in plant tissue. Endogenous Pas content varied during the culture cycle of Coffea arabica cells: putrescine (Put) levels increased at the end of the stationary phase, both spermidine (Spd) and spermine (Spm) accumulated at the beginning of the linear growth phase. Cells that were incubated with Put presented a significant increase in phospholipase D (PLD) (EC: 3.1.4.4) activity, phospholipase C (PLC) (EC: 3.1.4.3) activity decreased, and the effect on lipid kinases was less marked. However, the incubation of the cells with Spd and Spm significantly stimulated the lipid kinases activities, fundamentally increased the formation of phosphatidyl inositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2), while the effect on PLC and PLD activities was minor when compared with the cells treated with Put. The results presented here suggest that Pas may modulate the cellular signal of C. arabica cells by differentially affecting components of the phospholipid cascade.


Subject(s)
Biogenic Polyamines/physiology , Coffea/metabolism , Phospholipids/metabolism , Signal Transduction/physiology , Coffea/cytology , Coffea/enzymology , Phospholipase D/metabolism , Type C Phospholipases/metabolism
6.
J Plant Physiol ; 160(11): 1297-303, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14658381

ABSTRACT

The effect of aluminium (Al) on phosphoinositide-specific phospholipase C (PLC) and lipid kinase activities was examined in a cellular suspension of coffee. Two main effects were seen when cells were treated with AlCl3. In periods as short as 1 minute, Al-exposed cells increased the activity of PLC and IP3 formation up to two fold. Over longer periods PLC activity was inhibited by more than 50%. The activity of phosphatidylinositol 4-kinase (Pl 4-K), phosphatidylinositol phosphate 5-kinase (PIP 5-K) and diacylglycerol kinase increased when cells were incubated in the presence of different concentrations of AlCl3. The present study reports for the first time that Al may have different effects on the Pl-signaling pathway depending on the time of exposure. Our results strongly support the hypothesis that Al disrupts the metabolism of membrane phospholipids regulating not only PLC but also other enzymes that have key roles in signal-transduction pathways.


Subject(s)
Aluminum Compounds/pharmacology , Chlorides/pharmacology , Coffea/metabolism , Lipid Metabolism , Phosphatidylinositols/metabolism , 1-Phosphatidylinositol 4-Kinase/metabolism , Aluminum Chloride , Cells, Cultured , Coffea/cytology , Coffea/drug effects , Diacylglycerol Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Signal Transduction/drug effects , Time Factors , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL