Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38936832

ABSTRACT

D-xylose is a metabolizable carbon source for several non-Saccharomyces species, but not for native strains of S. cerevisiae. For the potential application of xylose-assimilating yeasts in biotechnological processes, a deeper understanding of pentose catabolism is needed. This work aimed to investigate the traits behind xylose utilization in diverse yeast species.The performance of nine selected xylose-metabolizing yeast strains was evaluated and compared across three oxygenation conditions. Oxygenation diversely impacted growth, xylose consumption and product accumulation. Xylose utilization by ethanol-producing species such as Spathaspora passalidarum and Scheffersomyces stipitis was less affected by oxygen restriction than other xylitol-accumulating species such as Meyerozyma guilliermondii, Naganishia liquefaciens and Yamadazyma sp., for which increased aeration stimulated xylose assimilation considerably. S. passalidarum exhibited superior conversion of xylose to ethanol and showed the fastest growth and xylose consumption in all three conditions. By performing assays under identical conditions for all selected yeasts, we minimize bias in comparisons, providing valuable insight into xylose metabolism and facilitating the development of robust bioprocesses.

2.
New Phytol ; 235(5): 1780-1795, 2022 09.
Article in English | MEDLINE | ID: mdl-35637555

ABSTRACT

During germination, seed reserves are mobilised to sustain the metabolic and energetic demands of plant growth. Mitochondrial respiration is presumably required to drive germination in several species, but only recently its role in this process has begun to be elucidated. Using Arabidopsis thaliana lines with changes in the levels of the respiratory chain component cytochrome c (CYTc), we investigated the role of this protein in germination and its relationship with hormonal pathways. Cytochrome c deficiency causes delayed seed germination, which correlates with decreased cyanide-sensitive respiration and ATP production at the onset of germination. In addition, CYTc affects the sensitivity of germination to abscisic acid (ABA), which negatively regulates the expression of CYTC-2, one of two CYTc-encoding genes in Arabidopsis. CYTC-2 acts downstream of the transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4), which binds to a region of the CYTC-2 promoter required for repression by ABA and regulates its expression. The results show that CYTc is a main player during seed germination through its role in respiratory metabolism and energy production. In addition, the direct regulation of CYTC-2 by ABI4 and its effect on ABA-responsive germination establishes a link between mitochondrial and hormonal functions during this process.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytochromes c/genetics , Cytochromes c/metabolism , Gene Expression Regulation, Plant , Germination/genetics , Mitochondria/metabolism , Seeds/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Plants (Basel) ; 10(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652808

ABSTRACT

Plant respiration provides metabolic flexibility under changing environmental conditions by modulating the activity of the nonphosphorylating alternative pathways from the mitochondrial electron transport chain, which bypass the main energy-producing components of the cytochrome oxidase pathway (COP). While adjustments in leaf primary metabolism induced by changes in day length are well studied, possible differences in the in vivo contribution of the COP and the alternative oxidase pathway (AOP) between different photoperiods remain unknown. In our study, in vivo electron partitioning between AOP and COP and expression analysis of respiratory components, photosynthesis, and the levels of primary metabolites were studied in leaves of wild-type (WT) plants and cytochrome c (CYTc) mutants, with reduced levels of COP components, under short- and long-day photoperiods. Our results clearly show that differences in AOP and COP in vivo activities between WT and cytc mutants depend on the photoperiod likely due to energy and stress signaling constraints. Parallel responses observed between in vivo respiratory activities, TCA cycle intermediates, amino acids, and stress signaling metabolites indicate the coordination of different pathways of primary metabolism to support growth adaptation under different photoperiods.

4.
Int J Mol Sci ; 19(3)2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29495437

ABSTRACT

Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution.


Subject(s)
Electron Transport Complex IV/metabolism , Energy Metabolism , Mitochondria/metabolism , Plants/metabolism , Animals , Catalytic Domain , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/genetics , Enzyme Activation , Gene Expression Regulation, Plant , Humans , Mammals/genetics , Mammals/metabolism , Mitochondria/genetics , Mutation , Plant Development , Plant Physiological Phenomena , Plants/genetics , Protein Subunits , Yeasts/genetics , Yeasts/metabolism
5.
Plant J ; 94(1): 105-121, 2018 04.
Article in English | MEDLINE | ID: mdl-29385297

ABSTRACT

We studied the effect of reducing the levels of the mitochondrial electron carrier cytochrome c (CYTc) in Arabidopsis thaliana. Plants with CYTc deficiency have delayed growth and development, and reach flowering several days later than the wild-type but with the same number of leaves. CYTc-deficient plants accumulate starch and glucose during the day, and contain lower levels of active gibberellins (GA) and higher levels of DELLA proteins, involved in GA signaling. GA treatment abolishes the developmental delay and reduces glucose accumulation in CYTc-deficient plants, which also show a lower raise in ATP levels in response to glucose. Treatment of wild-type plants with inhibitors of mitochondrial energy production limits plant growth and increases the levels of DELLA proteins, thus mimicking the effects of CYTc deficiency. In addition, an increase in the amount of CYTc decreases DELLA protein levels and expedites growth, and this depends on active GA synthesis. We conclude that CYTc levels impinge on the activity of the GA pathway, most likely through changes in mitochondrial energy production. In this way, hormone-dependent growth would be coupled to the activity of components of the mitochondrial respiratory chain.


Subject(s)
Arabidopsis/growth & development , Cytochromes c/metabolism , Gibberellins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cytochromes c/deficiency , Cytochromes c/physiology , Energy Metabolism , Gene Expression Regulation, Plant , Gibberellins/physiology , Glucose/metabolism , Homeostasis , Mitochondria/metabolism , Starch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...