Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Energies (Basel) ; 13(23)2022.
Article in English | MEDLINE | ID: mdl-36452268

ABSTRACT

Renewable portfolio standards are targeting high levels of variable solar photovoltaics (PV) in electric distribution systems, which makes reliability more challenging to maintain for distribution system operators (DSOs). Distributed energy resources (DERs), including smart, connected appliances and PV inverters, represent responsive grid resources that can provide flexibility to support the DSO in actively managing their networks to facilitate reliability under extreme levels of solar PV. This flexibility can also be used to optimize system operations with respect to economic signals from wholesale energy and ancillary service markets. Here, we present a novel hierarchical scheme that actively controls behind-the-meter DERs to reliably manage each unbalanced distribution feeder and exploits the available flexibility to ensure reliable operation and economically optimizes the entire distribution network. Each layer of the scheme employs advanced optimization methods at different timescales to ensure that the system operates within both grid and device limits. The hierarchy is validated in a large-scale realistic simulation based on data from the industry. Simulation results show that coordination of flexibility improves both system reliability and economics, and enables greater penetration of solar PV. Discussion is also provided on the practical viability of the required communications and controls to implement the presented scheme within a large DSO.

2.
Sci Total Environ ; 487: 299-312, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24793327

ABSTRACT

The global-regional climate-air pollution modeling system (GRE-CAPS) was applied over the eastern United States to study the impact of climate change on the concentration and deposition of atmospheric mercury. Summer and winter periods (300 days for each) were simulated, and the present-day model predictions (2000s) were compared to the future ones (2050s) assuming constant emissions. Climate change affects Hg(2+) concentrations in both periods. On average, atmospheric Hg(2+) levels are predicted to increase in the future by 3% in summer and 5% in winter respectively due to enhanced oxidation of Hg(0) under higher temperatures. The predicted concentration change of Hg(2+) was found to vary significantly in space due to regional-scale changes in precipitation, ranging from -30% to 30% during summer and -20% to 40% during winter. Particulate mercury, Hg(p) has a similar spatial response to climate change as Hg(2+), while Hg(0) levels are not predicted to change significantly. In both periods, the response of mercury deposition to climate change varies spatially with an average predicted increase of 6% during summer and 4% during winter. During summer, deposition increases are predicted mostly in the western parts of the domain while mercury deposition is predicted to decrease in the Northeast and also in many areas in the Midwest and Southeast. During winter mercury deposition is predicted to change from -30% to 50% mainly due to the changes in rainfall and the corresponding changes in wet deposition.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Climate Change , Environmental Monitoring , Mercury/analysis , Climate , Seasons , United States
3.
Environ Sci Technol ; 43(3): 571-7, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19244985

ABSTRACT

We examined future ozone (O3) air quality in the United States (U.S.) under changing climate and anthropogenic emissions worldwide by performing global climate-chemistry simulations, utilizing various combinations of present (1990s) and future (Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 2050s) climates, and present and future (2050s; IPCC SRES A2 and B1) anthropogenic emissions. The A2 climate scenario is employed here because it lies at the upper extreme of projected climate change for the 21st century. To examine the sensitivity of U.S. O3 to regional emissions increases (decreases), the IPCC SRES A2 and B1 scenarios, which have overall higher and lower O3-precursor emissions for the U.S., respectively, have been chosen. We find that climate change, by itself, significantly worsens the severity and frequency of high-O3 events ("episodes") over most locations in the U.S., with relatively small changes in average O3 air quality. These high-O3 increases due to climate change alone will erode moderately the gains made under a U.S. emissions reduction scenario (e.g., B1). The effect of climate change on high- and average-O3 increases with anthropogenic emissions. Insofar as average O3 air quality is concerned, changes in U.S. anthropogenic emissions will play the most important role in attaining (or not) near-term U.S. O3 air quality standards. However, policy makers must plan appropriately for O3 background increases due to projected increases in global CH4 abundance and non-U.S. anthropogenic emissions, as well as potential local enhancements that they could cause. These findings provide strong incentives for more-than-planned emissions reductions at locations that are currently O3-nonattainment.


Subject(s)
Air Pollutants , Air , Climate , Ozone/analysis , United States
SELECTION OF CITATIONS
SEARCH DETAIL