Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 55(1): 789-797, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38146049

ABSTRACT

Endophytic bacteria play a crucial role in plant development and adaptation, and the knowledge of how endophytic bacteria assemblage is influenced by cultivation site and plant genotype is an important step to achieve microbiome manipulation. This work aimed to study the roots and stems of endophytic bacteriome of four maize genotypes cultivated in two regions of the semi-arid region of Pernambuco - Brazil. Our hypothesis is that the endophytic community assemblage will be influenced by plant genotypes and cultivation region. Metabarcoding sequencing data revealed significant differences in alfa diversity in function of both factors, genotypes, and maize organs. Beta diversity analysis showed that the bacterial communities differ mainly in function of the plant organ. The most abundant genera found in the samples were Leifsonia, Bacillus, Klebsiella, Streptomyces, and Bradyrhizobium. To understand ecological interactions within each compartment, we constructed co-occurrence network for each organ. This analysis revealed important differences in network structure and complexity and suggested that Leifsonia (the main genera found) had distinct ecological roles depending on the plant organ. Our data showed that root endophytic maize bacteria would be influenced by cultivation site, but not by genotype. We believe that, collectively, our data not only characterize the bacteriome associated with this plant and how different factors shape it, but also increase the knowledge to select potential bacteria for bioinoculant production.


Subject(s)
Actinomycetales , Zea mays , Zea mays/microbiology , Brazil , Endophytes/genetics , Bacteria/genetics , Genotype , Plant Roots/microbiology
2.
Microorganisms ; 9(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34835361

ABSTRACT

Coral-associated microbes are crucial for the biology of their hosts, contributing to nutrient cycling, adaptation, mitigation of toxic compounds, and biological control of pathogens. Natural products from coral-associated micro-organisms (CAM) may possess unique traits. Despite this, the use of CAM for biotechnological purposes has not yet been adequately explored. Here, we investigated the production of commercially important enzymes by 37 strains of bacteria isolated from the coral species Mussismilia braziliensis, Millepora alcicornis, and Porites astreoides. In-vitro enzymatic assays showed that up to 56% of the isolates produced at least one of the seven enzymes screened (lipase, caseinase, keratinase, cellulase, chitinase, amylase, and gelatinase); one strain, identified as Bacillus amyloliquefaciens produced all these enzymes. Additionally, coral species-specific cultured and uncultured microbial communities were identified. The phylum Firmicutes predominated among the isolates, including the genera Exiguobacterium, Bacillus, and Halomonas, among others. Next-generation sequencing and bacteria culturing produced similar but also complementary data, with certain genera detected only by one or the other method. Our results demonstrate the importance of exploring different coral species as sources of specific micro-organisms of biotechnological and industrial interest, at the same time reinforcing the economic and ecological importance of coral reefs as reservoirs of such diversity.

3.
Sci Total Environ ; 743: 140428, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32763724

ABSTRACT

17α-ethinylestradiol (EE2) is a synthetic estrogen that can cause harmful effects on animals, such as male feminization and infertility. However, the impact of the EE2 contamination on microbial communities and the potential role of bacterial strains as bioremediation agents are underexplored. The aim of this work was to evaluate the impact of EE2 on the microbial community dynamics of aerated submerged fixed-film reactors (ASFFR) simulating a polishing step downstream of a secondary sewage treatment. For this purpose, the reactors were fed with a synthetic medium with low COD content (around 50 mg l-1), supplemented (reactor H) or not (reactor C) with 1 µg l-1 of EE2. Sludge samples were periodically collected during the bioreactors operation to assess the bacterial profile over time by 16S rRNA gene amplicon sequencing or by bacterial isolation using culture-dependent approach. The results revealed that the most abundant phyla in both reactors were Proteobacteria and Bacteroidetes. At genus level, Chitinophagaceae, Nitrosomonas and Bdellovibrio predominated. Significant effects caused by EE2 treatment and bioreactors operating time were observed by non-metric multidimensional scaling. Therefore, even at low concentrations as 1 µg l-1, EE2 is capable of influencing the bioreactor microbiome. Culture-dependent methods showed that six bacterial isolates, closely related to Pseudomonas and Acinetobacter genera, could grow on EE2 as the sole carbon source under aerobic conditions. These organisms may potentially be used for the assembly of an EE2-degrading bacterial consortium and further exploited for bioremediation applications, including tertiary sewage treatment to remove hormone-related compounds not metabolized in secondary depuration stages.


Subject(s)
Estradiol Congeners , Microbiota , Animals , Bioreactors , Estrogens , Ethinyl Estradiol , Male , RNA, Ribosomal, 16S , Sewage
4.
Sci Rep ; 10(1): 9075, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32493970

ABSTRACT

Agriculture, forestry and other land uses are currently the second highest source of anthropogenic greenhouse gases (GHGs) emissions. In soil, these gases derive from microbial activity, during carbon (C) and nitrogen (N) cycling. To investigate how Eucalyptus land use and growth period impact the microbial community, GHG fluxes and inorganic N levels, and if there is a link among these variables, we monitored three adjacent areas for 9 months: a recently planted Eucalyptus area, fully developed Eucalyptus forest (final of rotation) and native forest. We assessed the microbial community using 16S rRNA gene sequencing and qPCR of key genes involved in C and N cycles. No considerable differences in GHG flux were evident among the areas, but logging considerably increased inorganic N levels. Eucalyptus areas displayed richer and more diverse communities, with selection for specific groups. Land use influenced communities more extensively than the time of sampling or growth phase, although all were significant modulators. Several microbial groups and genes shifted temporally, and inorganic N levels shaped several of these changes. No correlations among microbial groups or genes and GHG were found, suggesting no link among these variables in this short-rotation Eucalyptus study.


Subject(s)
Eucalyptus/physiology , Prokaryotic Cells/physiology , Soil/chemistry , Agriculture/methods , Carbon/chemistry , Carbon/metabolism , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Environmental Monitoring/methods , Eucalyptus/genetics , Eucalyptus/metabolism , Forestry/methods , Forests , Greenhouse Gases/chemistry , Greenhouse Gases/metabolism , Nitrogen/chemistry , Nitrogen/metabolism , Nitrous Oxide/chemistry , Nitrous Oxide/metabolism , Prokaryotic Cells/metabolism , RNA, Ribosomal, 16S/genetics , Rotation
5.
Front Microbiol ; 10: 2799, 2019.
Article in English | MEDLINE | ID: mdl-31849922

ABSTRACT

Sponges can host diverse and abundant communities of microorganisms, which constitute an interesting source of bioactive compounds. Thus, to broaden our knowledge about the diversity of the microbiota that is found in freshwater sponges, the microbial community of Tubella variabilis was analyzed using culture-independent and culture-dependent approaches. Additionally, sponge-associated bacteria were compared with those living in the surrounding waters. Bacteria were also tested for antimicrobial production. Overall, the microbial composition identified comprises at least 44 phyla belonging mainly to Proteobacteria and low percentages of Bacteroidetes, Acidobacteria, and Verrucomicrobia. Alphaproteobacteria was the dominant class in T. variabilis while Betaproteobacteria was dominant in freshwater. Our data also revealed a high richness of bacteria in comparison to another freshwater sponge and 32 marine sponges. A global comparison of the structure of microbiota of different sponges showed that the main structuring factor may be the sponge environment, with T. variabilis and all freshwater sponges clustering together, and far away from the marine sponges. Bacterial strains from sponges and from freshwater were isolated and 163 morphotypes were phylogenetically identified. These belong to 26 genera, of which 12 were exclusively found in sponge samples and three only in freshwater. Inhibitory activities were also detected among 20-25% of the isolates from sponges and freshwater, respectively. This study presents new information on the composition of the microbial community found in freshwater sponges, which is diverse, abundant and distinct from some marine sponges. Moreover, the antimicrobial activity observed from the bacterial strains might play an important role in shaping microbial communities of the environment.

6.
PLoS Negl Trop Dis ; 12(9): e0006739, 2018 09.
Article in English | MEDLINE | ID: mdl-30212460

ABSTRACT

BACKGROUND: Chagas disease is caused by the parasite Trypanosoma cruzi and is transmitted through triatomines (Hemiptera: Reduviidae). In the last year, many studies of triatomine gut microbiota have outlined its potential role in modulating vector competence. However, little is known about the microbiota present in the salivary glands of triatomines. Bacterial composition of salivary glands in selected triatomine species was investigated, as well as environmental influences on the acquisition of bacterial communities. METHODOLOGY/PRINCIPAL FINDINGS: The diversity of the bacterial communities of 30 pairs of salivary glands of triatomines was studied by sequencing of the V1- V3 variable region of the 16S rRNA using the MiSeq platform (Illumina), and bacteria isolated from skin of three vertebrate hosts were identified based on 16S rRNA gene sequence analysis (targeting the V3-V5 region). In a comparative analysis of microbiota in the salivary glands of triatomine species, operational taxonomic units belonging to Arsenophonous appeared as dominant in Triatoma spp (74% of the total 16S coverage), while these units belonging to unclassified Enterobacteriaceae were dominant in the Rhodnius spp (57% of the total 16S coverage). Some intraspecific changes in the composition of the triatomine microbiota were observed, suggesting that some bacteria may have been acquired from the environment. CONCLUSIONS AND SIGNIFICANCE: Our study revealed the presence of a low-diversity microbiota associated to the salivary glands of the evaluated triatomines. The predominant bacteria genera are associated with triatomine genera and the bacteria can be acquired in the environment in which the insects reside. Further studies are necessary to determine the influence of bacterial communities on vector competence.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Biota , Insect Vectors/microbiology , Salivary Glands/microbiology , Triatominae/microbiology , Animals , Bacteria/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Skin/microbiology , Vertebrates
7.
Microb Ecol ; 75(1): 183-191, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28634640

ABSTRACT

Eucalyptus plantations offer a cost-effective and renewable source of raw material. There is substantial interest in improving forestry production, especially through sustainable strategies such as the use of plant growth-promoting bacteria. However, little is known about Eucalyptus microbiology. In this study, the endophytic bacterial community was assessed in Eucalyptus urograndis roots using culture-dependent and culture-independent techniques with plants grown under different conditions. Three phyla accounted for approximately 95% of the community, with Actinobacteria corresponding to approximately 59%. This contrasts with previous studies in which Actinobacteria accounted for only 5 to 10%. Our data also revealed a high diversity of bacteria, with 359 different genera but a high level of dominance. Six genera, Mycobacterium, Bradyrhizobium, Streptomyces, Bacillus, Actinospica, and Burkholderia, accounted for more than 50% of the classified sequences. We observed a significant influence of the treatments on some genera, causing changes in the bacterial community structure. The obtained data also suggest that Eucalyptus may benefit from biological nitrogen fixation, with many abundant genera being closely related to nitrogen-fixing bacteria. Using N-depleted media, we also cultured 95 bacterial isolates, of which 24 tested positive for the nifH gene and were able to maintain growth without any N source in the medium.


Subject(s)
Bacteria/metabolism , Endophytes/metabolism , Eucalyptus/microbiology , Microbiota , Nitrogen Fixation , Plant Roots/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil Microbiology
8.
Microb Ecol ; 75(1): 192, 2018 01.
Article in English | MEDLINE | ID: mdl-29196844

ABSTRACT

The original version of this article unfortunately contained mistakes in the first author's name and the running page headers.

SELECTION OF CITATIONS
SEARCH DETAIL
...