Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
2.
Br J Sports Med ; 58(15): 860-869, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38950917

ABSTRACT

Several International Federations (IFs) employ specific policies to protect athletes' health from the danger of heat. Most policies rely on the measurement of thermal indices such as the Wet Bulb Globe Temperature (WBGT) to estimate the risk of heat-related illness. This review summarises the policies implemented by the 32 IFs of the 45 sports included in the Paris 2024 Olympic Games. It provides details into the venue type, measured parameters, used thermal indices, measurement procedures, mitigation strategies and specifies whether the policy is a recommendation or a requirement. Additionally, a categorisation of sports' heat stress risk is proposed. Among the 15 sports identified as high, very high or extreme risk, one did not have a heat policy, three did not specify any parameter measurement, one relied on water temperature, two on air temperature and relative humidity, seven on WBGT (six measured on-site and one estimated) and one on the Heat Stress Index. However, indices currently used in sports have been developed for soldiers or workers and may not adequately reflect the thermal strain endured by athletes. Notably, they do not account for the athletes' high metabolic heat production and their level of acclimation. It is, therefore, worthwhile listing the relevance of the thermal indices used by IFs to quantify the risk of heat stress, and in the near future, develop an index adapted to the specific needs of athletes.


Subject(s)
Heat Stress Disorders , Hot Temperature , Sports , Humans , Heat Stress Disorders/prevention & control , Sports/physiology , Sports/classification , Hot Temperature/adverse effects , Athletes/classification , Paris , Health Policy
3.
Br J Sports Med ; 58(15): 870-881, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38955507

ABSTRACT

The upcoming Paris 2024 Olympic and Paralympic Games could face environmental challenges related to heat, air quality and water quality. These challenges will pose potential threats to athletes and impact thousands of stakeholders and millions of spectators. Recognising the multifaceted nature of these challenges, a range of strategies will be essential for mitigating adverse effects on participants, stakeholders and spectators alike. From personalised interventions for athletes and attendees to comprehensive measures implemented by organisers, a holistic approach is crucial to address these challenges and the possible interplay of heat, air and water quality factors during the event. This evidence-based review highlights various environmental challenges anticipated at Paris 2024, offering strategies applicable to athletes, stakeholders and spectators. Additionally, it provides recommendations for Local Organising Committees and the International Olympic Committee that may be applicable to future Games. In summary, the review offers solutions for consideration by the stakeholders responsible for and affected by the anticipated environmental challenges at Paris 2024.


Subject(s)
Athletes , Sports , Humans , Anniversaries and Special Events , Hot Temperature/adverse effects , Air Pollution/prevention & control , Air Pollution/adverse effects , Stakeholder Participation , Paris , Sports for Persons with Disabilities
4.
J Biomech ; 171: 112170, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38870569

ABSTRACT

Fascicle force-length relationship is one major basic mechanical property of skeletal muscle, subsequently influencing movement mechanics. While force-length properties are increasingly described through ultrafast ultrasound imaging, their test-retest reliability remains unknown. Using ultrafast ultrasound, and electrically evoked contractions at various ankle angles, gastrocnemius medialis fascicle force-length relationship was assessed twice, few days apart, in sixteen participants. The test-retest reliability of the resulting fascicle force-length relationship key parameters - i.e., maximal force (Fmax), and optimal fascicle length (L0) - was evaluated considering (i) all the trials obtained at each ankle joint and (ii) the mean of the two trials obtained at each tested angle. Considering all trials, L0 indicated a 'high' test-retest reliability, with intra-class correlation coefficients (ICC) of 0.89 and Fmax a 'moderate' reliability (ICC = 0.71), while when averaging the two trials L0 reliability was 'very-high' (ICC = 0.91), and Fmax reliability 'moderate' (ICC = 0.73). All values of coefficient of variation and standard error of measurement were low, i.e., ≤7.7 % and ≤0.35 cm for L0 and ≤3.4 N for Fmax, respectively. Higher absolute reliability was reported for L0 than Fmax, with better reliability when averaging the two trials at each angle. All these parameters, in accordance with the limit of agreement, demonstrated that L0 and Fmax test-retest reliability is acceptable, particularly when averaging multiple points obtained at a given angle. Interestingly, the shape of the fascicle force-length relationship is more variable. Therefore, L0 and Fmax can be used to compare between days-effects following an intervention, while a comparison of fascicle operating lengths may require more precautions.


Subject(s)
Ankle Joint , Muscle, Skeletal , Ultrasonography , Humans , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Male , Adult , Reproducibility of Results , Ultrasonography/methods , Female , Ankle Joint/physiology , Ankle Joint/diagnostic imaging , Muscle Contraction/physiology , Biomechanical Phenomena , Young Adult
6.
Med Sci Sports Exerc ; 56(6): 1140-1150, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38233977

ABSTRACT

PURPOSE: Muscle mechanics is paramount in our understanding of motor performance. However, little is known regarding the sensitivity of fascicle dynamics and connective tissues stiffness to exercise duration and ambient temperature during running, both increasing muscle temperature. This study aimed to determine gastrocnemius medialis (GM) fascicle dynamics in vivo during running in temperate and hot conditions, as well as muscle-tendon unit responses. METHODS: Using ultrafast ultrasound, 15 participants (8 men, 7 women; 26 ± 3 yr) were tested before, during (2 and 40 min), and after a running task (40 min at 10 km·h -1 ) in temperate (TEMP; ~23°C) and hot (HOT: ~38°C) conditions. RESULTS: Although core, skin temperatures, and heart rate increased from the beginning to the end of the exercise and in a larger extent in HOT than TEMP ( P < 0.001), the physiological stress elicited did not alter running temporal parameters and GM fascicle operating lengths, with similar behavior of the fascicles on their force-length relationship, over time (2 vs 40 min) or across condition (TEMP vs HOT; P ≥ 0.248). Maximal voluntary force production did not reported statistical changes after exercise ( P = 0.060), and the connective tissues stiffness measured (i.e., passive muscle and stiffness of the series-elastic elements) did not show neither time ( P ≥ 0.281), condition ( P ≥ 0.256) nor time-condition interaction ( P ≥ 0.465) effect. CONCLUSIONS: This study revealed that prolonged running exercise does not alter muscle-tendon unit properties and interplay, which are not influenced by ambient temperature. These findings may rule out potential detrimental effects of heat on muscle properties and encourage further investigations on longer and more intense running exercise.


Subject(s)
Hot Temperature , Muscle, Skeletal , Running , Ultrasonography , Humans , Male , Running/physiology , Female , Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Heart Rate/physiology , Tendons/physiology , Tendons/diagnostic imaging , Young Adult , Skin Temperature/physiology , Time Factors , Body Temperature/physiology , Connective Tissue/physiology
7.
Int J Sports Physiol Perform ; 19(3): 322-327, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38237571

ABSTRACT

BACKGROUND: Repeated exposure to heat (ie, plasma volume expansion) or altitude (ie, increase in total hemoglobin mass), in conjunction with exercise, induces hematological adaptations that enhance endurance performance in each respective environment. Recently, combining heat and altitude training has become increasingly common for athletes preparing to compete in temperate, sea-level conditions. PURPOSE: To review the physiological adaptations to training interventions combining thermal and hypoxic stimuli and summarize the implications for temperate, sea-level performance. Current Evidence: To date, research on combining heat and hypoxia has employed 2 main approaches: simultaneously combining the stressors during training or concurrently training in the heat and sleeping at altitude, sometimes with additional training in hypoxia. When environmental stimuli are combined in a training session, improvements in aerobic fitness and time-trial performance in temperate, sea-level conditions are generally similar in magnitude to those observed with heat, or altitude, training alone. Similarly, training in the heat and sleeping at altitude does not appear to provide any additional hematological or nonhematological benefits for temperate; sea-level performance relative to training in hot, hypoxic, or control conditions. CONCLUSIONS: Current research regarding combined heat and altitude interventions does not seem to indicate that it enhances temperate, sea-level performance to a greater extent than "traditional" (heat or hypoxia alone) training approaches. A major challenge in implementing combined-stressor approaches lies in the uncertainty surrounding the prescription of dosing regimens (ie, exercise and environmental stress). The potential benefits of conducting heat and altitude exposure sequentially (ie, one after the other) warrants further investigation.


Subject(s)
Altitude , Hot Temperature , Humans , Hypoxia , Adaptation, Physiological , Exercise , Acclimatization/physiology
8.
Int J Sports Physiol Perform ; 19(1): 80-83, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37917965

ABSTRACT

PURPOSE: To investigate the effect of cycling-based repeated-sprint training in hypoxia versus in normoxia on single overground running sprint performance and associated force-velocity (F-V) profile in world-class female rugby sevens players. METHODS: Eighteen world-class female rugby sevens players were randomly assigned to repeated-sprint cycling training in normobaric hypoxia (n = 9) or normoxia (n = 9) groups. Training consisted of 4 sessions of repeated-sprint cycling training in normobaric hypoxia or in normoxia (4 × 5 × 5-s cycle sprints-25-s intersprint recovery performed in simulated altitude of ∼5000 m or in normoxia with 3-min interset rest in normoxia for both groups) in addition to rugby sevens training and strength and conditioning sessions within a 9-day intervention period before an international competition. Before and 1 day after the intervention, single 50-m overground running "all-out" sprint performance and associated F-V-related mechanical output were assessed. RESULTS: No interaction (group × time; all P > .088), time effect (before vs 1 d after; all P > .296), or group effect (repeated-sprint cycling training in normobaric hypoxia vs in normoxia; all P > .325) was detected for 50-m overground running sprint performance and any derived F-V profiling variables. CONCLUSIONS: Four sessions of repeated-sprint training either in hypoxia or in normoxia performed over 9 days had no influence on single 50-m overground running sprint performance and associated F-V profile. In world-class female rugby sevens players, the intervention (training camp before an international competition) might have been too short to induce measurable changes. It is also plausible that implementing a similar program in players with likely different F-V profile may result in negligible mechanical effect.


Subject(s)
Athletic Performance , Running , Female , Humans , Altitude , Bicycling , Hypoxia
9.
Sports Med ; 53(Suppl 1): 97-113, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37787844

ABSTRACT

A growing number of companies are developing or using wearable sensor technologies that can monitor, analyse and transmit data from humans in real time that can be used by the sporting, biomedical and media industries. To explore this phenomenon, we describe and review two high-profile sporting events where innovations in wearable technologies were trialled: the Tokyo 2020 Summer Olympic Games (Tokyo 2020, Japan) and the 2022 adidas Road to Records (Germany). These two major sporting events were the first time academic and industry partners came together to implement real-time wearable solutions during major competition, to protect the health of athletes competing in hot and humid environments, as well as to better understand how these metrics can be used moving forwards. Despite the undoubted benefits of such wearables, there are well-founded concerns regarding their use including: (1) limited evidence quantifying the potential beneficial effects of analysing specific parameters, (2) the quality of hardware and provided data, (3) information overload, (4) data security and (5) exaggerated marketing claims. Employment and sporting rules and regulations also need to evolve to facilitate the use of wearable devices. There is also the potential to obtain real-time data that will oblige medical personnel to make crucial decisions around whether their athletes should continue competing or withdraw for health reasons. To protect athletes, the urgent need is to overcome these ethical/data protection concerns and develop wearable technologies that are backed by quality science. The fields of sport and exercise science and medicine provide an excellent platform to understand the impact of wearable sensors on performance, wellness, health, and disease.


Subject(s)
Sports , Wearable Electronic Devices , Humans , Athletes , Exercise , Technology
10.
J Sports Sci ; 41(11): 1126-1135, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37722830

ABSTRACT

This study compared the acute effects of three recovery methods: active recovery (AR), hot- and cold-water immersion (HWI and CWI, respectively), used between two training sessions in elite athletes. Twelve national-team skaters (7 males, 5 females) completed three trials according to a randomized cross-over study. Fifteen minutes after an exhaustive ice-skating training session, participants underwent 20 min of HWI (41.1 ± 0.5°C), 15 min of CWI (12.1 ± 0.7°C) or 15 min of active recovery (AR). After 1 h 30 min of the first exercise, they performed a repeated-sprint cycling session. Average power output was slightly but significantly higher for AR (767 ± 179 W) and HWI (766 ± 170 W) compared to CWI (738 ± 156 W) (p = 0.026, d = 0.18). No statistical difference was observed between the conditions for both lactatemia and rating of perceived exertion. Furthermore, no significant effect of recovery was observed on the fatigue index calculated from the repeated sprint cycling exercises (p > 0.05). Finally, a positive correlation was found between the average muscle temperature measured during the recoveries and the maximal power output obtained during cycling exercises. In conclusion, the use of CWI in between high-intensity training sessions could slightly impair the performance outcomes compared to AR and HWI. However, studies with larger samples are needed to confirm these results, especially in less trained athletes.


Subject(s)
Cold Temperature , Immersion , Male , Humans , Exercise/physiology , Water , Fatigue
11.
Int J Sports Physiol Perform ; 18(11): 1352-1356, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37604483

ABSTRACT

PURPOSE: To compare the effects of graded hypoxia during exhaustive intermittent cycling on subsequent rapid and maximal torque-production capacity. METHODS: Fifteen well-trained cyclists repeated intermittent cycling bouts (15 s at 30% of anaerobic power reserve; rest = 45 s) until exhaustion at sea level (FiO2 ∼0.21/end-exercise arterial oxygen saturation ∼96%), moderate hypoxia (FiO2 ∼0.16/∼90%), and severe hypoxia (FiO2 ∼0.12/∼79%). Rapid (rate of torque development [RTD]) and maximal isometric torque-production capacities of the knee extensors were assessed at baseline (visit 1) and exhaustion (visits 2-4). RESULTS: Exercise capacity decreased with hypoxia severity (39 [30], 22 [13], and 13 [6] cycle efforts in sea level, moderate hypoxia, and severe hypoxia, respectively; P = .002). Changes in maximal-voluntary-contraction torque between baseline and postexercise in all conditions were not statistically significant (pooled values: -2.6% [5.7%]; P = .162). Peak RTD measured postexercise was reduced below baseline in all conditions (-21.5% [5.1%]; P ≤ .015). Compared with baseline, absolute RTD values were lower at 0- to 30-millisecond (-35.1% [5.3%], P ≤ .020), 0- to 50-millisecond (-40.0% [3.9%], P ≤ .002), 0- to 100-millisecond (-30.7% [3.7%], P ≤ .001), and 0- to 200-millisecond (-18.1% [2.4%], P ≤ .004) time intervals in all conditions. CONCLUSIONS: Exhaustive intermittent cycling induces substantial yet comparable impairments in RTD of knee extensors between normoxia and moderate to severe hypoxia.


Subject(s)
Explosive Agents , Humans , Torque , Isometric Contraction , Hypoxia , Oxygen , Muscle, Skeletal
12.
Int J Sports Physiol Perform ; 18(9): 1053-1061, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37553108

ABSTRACT

PURPOSE: To investigate the effects of a training camp with heat and/or hypoxia sessions on hematological and thermoregulatory adaptations. METHODS: Fifty-six elite male rugby players completed a 2-week training camp with 5 endurance and 5 repeated-sprint sessions, rugby practice, and resistance training. Players were separated into 4 groups: CAMP trained in temperate conditions at sea level, HEAT performed the endurance sessions in the heat, ALTI slept and performed the repeated sprints at altitude, and H + A was a combination of the heat and altitude groups. RESULTS: Blood volume across all groups increased by 140 mL (95%CI, 42-237; P = .006) and plasma volume by 97 mL (95%CI 28-167; P = .007) following the training camp. Plasma volume was 6.3% (0.3% to 12.4%) higher in HEAT than ALTI (P = .034) and slightly higher in HEAT than H + A (5.6% [-0.3% to 11.7%]; P = .076). Changes in hemoglobin mass were not significant (P = .176), despite a ∼1.2% increase in ALTI and H + A and a ∼0.7% decrease in CAMP and HEAT. Peak rectal temperature was lower during a postcamp heat-response test in HEAT (0.3 °C [0.1-0.5]; P = .010) and H + A (0.3 °C [0.1-0.6]; P = .005). Oxygen saturation upon waking was lower in ALTI (3% [2% to 5%]; P < .001) and H + A (4% [3% to 6%]; P < .001) than CAMP and HEAT. CONCLUSION: Although blood and plasma volume increased following the camp, sleeping at altitude impeded the increase when training in the heat and only marginally increased hemoglobin mass. Heat training induced adaptations commensurate with partial heat acclimation; however, combining heat training and altitude training and confinement during a training camp did not confer concomitant hematological adaptations.


Subject(s)
Acclimatization , Rugby , Humans , Male , Acclimatization/physiology , Adaptation, Physiological , Hypoxia , Hemoglobins , Hot Temperature
13.
Med Sci Sports Exerc ; 55(10): 1923-1932, 2023 10 01.
Article in English, French | MEDLINE | ID: mdl-37259251

ABSTRACT

PURPOSE: The objective of this study is to investigate the effectiveness of novel repeated-sprint training in hypoxia (RSH) protocol, likely maximizing hypoxic stimulus (higher than commonly used) while preserving training quality (interset rest in normoxia). METHODS: Twenty-three world-class female rugby sevens players performed four repeated-sprint training sessions (4 sets of 5 × 5-s cycle sprints-25-s intersprint recovery and 3-min interset rest) under normobaric hypoxia (RSH, exercise and interset rest at FiO 2 of 10.6% and 20.9%, respectively; n = 12) or normoxia (repeated-sprint training in normoxia; exercise and interset rest at FiO 2 of 20.9%; n = 11) during a 9-d training camp before international competition. Repeated-sprint ability (8 × 5-s treadmill sprints-25-s recovery), on-field aerobic capacity, and brachial endothelial function were assessed pre- and postintervention. RESULTS: Arterial oxygen saturation (pooled data: 87.0% ± 3.1% vs 96.7% ± 2.9%, P < 0.001) and peak and mean power outputs (sets 1 to 4 average decrease: -21.7% ± 7.2% vs -12.0% ± 3.8% and -24.9% ± 8.1% vs -14.9% ± 3.5%; both P < 0.001) were lower in RSH versus repeated-sprint training in normoxia. The cumulated repeated-sprint distance covered significantly increased from pre- to postintervention (+1.9% ± 3.0%, P = 0.019), irrespective of the condition ( P = 0.149). On-field aerobic capacity did not change (all P > 0.45). There was no significant interaction (all P > 0.240) or condition main effect (all P > 0.074) for any brachial artery endothelial function variable. Only peak diameter increased ( P = 0.026), whereas baseline and peak shear stress decreased ( P = 0.014 and 0.019, respectively), from pre- to postintervention. CONCLUSIONS: In world-class female rugby sevens players, only four additional repeated-sprint sessions before competition improve repeated-sprint ability and brachial endothelial function. However, adding severe hypoxic stress during sets of repeated sprints only did not provide supplementary benefits.


PURPOSE: The objective of this study is to investigate the effectiveness of novel repeated-sprint training in hypoxia (RSH) protocol, likely maximizing hypoxic stimulus (higher than commonly used) while preserving training quality (interset rest in normoxia). METHODS: Twenty-three world-class female rugby sevens players performed four repeated-sprint training sessions (4 sets of 5 × 5-s cycle sprints­25-s intersprint recovery and 3-min interset rest) under normobaric hypoxia (RSH, exercise and interset rest at FiO 2 of 10.6% and 20.9%, respectively; n = 12) or normoxia (repeated-sprint training in normoxia; exercise and interset rest at FiO 2 of 20.9%; n = 11) during a 9-d training camp before international competition. Repeated-sprint ability (8 × 5-s treadmill sprints­25-s recovery), on-field aerobic capacity, and brachial endothelial function were assessed pre- and postintervention. RESULTS: Arterial oxygen saturation (pooled data: 87.0% ± 3.1% vs 96.7% ± 2.9%, P < 0.001) and peak and mean power outputs (sets 1 to 4 average decrease: −21.7% ± 7.2% vs −12.0% ± 3.8% and −24.9% ± 8.1% vs −14.9% ± 3.5%; both P < 0.001) were lower in RSH versus repeated-sprint training in normoxia. The cumulated repeated-sprint distance covered significantly increased from pre- to postintervention (+1.9% ± 3.0%, P = 0.019), irrespective of the condition ( P = 0.149). On-field aerobic capacity did not change (all P > 0.45). There was no significant interaction (all P > 0.240) or condition main effect (all P > 0.074) for any brachial artery endothelial function variable. Only peak diameter increased ( P = 0.026), whereas baseline and peak shear stress decreased ( P = 0.014 and 0.019, respectively), from pre- to postintervention. CONCLUSIONS: In world-class female rugby sevens players, only four additional repeated-sprint sessions before competition improve repeated-sprint ability and brachial endothelial function. However, adding severe hypoxic stress during sets of repeated sprints only did not provide supplementary benefits.


Subject(s)
Athletic Performance , Physical Conditioning, Human , Humans , Female , Rugby , Altitude , Hypoxia , Physical Conditioning, Human/methods
14.
J Appl Physiol (1985) ; 134(5): 1300-1311, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37022963

ABSTRACT

The purpose of this study was to characterize thermoregulatory and performance responses of elite road-race athletes, while competing in hot, humid, night-time conditions during the 2019 IAAF World Athletic Championships. Male and female athletes, competing in the 20 km racewalk (n = 20 males, 24 females), 50 km racewalk (n = 19 males, 8 females), and marathon (n = 15 males, 22 females) participated. Exposed mean skin (Tsk) and continuous core body (Tc) temperature were recorded with infrared thermography and ingestible telemetry pill, respectively. The range of ambient conditions (recorded roadside) was 29.3°C-32.7°C air temperature, 46%-81% relative humidity, 0.1-1.7 m·s-1 air velocity, and 23.5°C-30.6°C wet bulb globe temperature. Tc increased by 1.5 ± 0.1°C but mean Tsk decreased by 1.5 ± 0.4°C over the duration of the races. Tsk and Tc changed most rapidly at the start of the races and then plateaued, with Tc showing a rapid increase again at the end, in a pattern mirroring pacing. Performance times were between 3% and 20% (mean = 113 ± 6%) longer during the championships compared with the personal best (PB) of athletes. Overall mean performance relative to PB was correlated with the wet-bulb globe temperature (WBGT) of each race (R2 = 0.89), but not with thermophysiological variables (R2 ≤ 0.3). As previously reported in exercise heat stress, in this field study Tc rose with exercise duration, whereas Tsk showed a decline. The latter contradicts the commonly recorded rise and plateau in laboratory studies at similar ambient temperatures but without realistic air movement.NEW & NOTEWORTHY This paper provides a kinetic observation of both core and skin temperatures in 108 elite athletes, during various outdoor competition events, adding to the very limited data so far available in the literature taken during elite competitions. The field skin temperature findings contrast previous laboratory findings, likely due to differences in relative air velocity and its impact on the evaporation of sweat. The rapid rise in skin temperature following cessation of exercise highlights the importance of infrared thermography measurements being taken during motion, not during breaks, when being used as a measurement of skin temperature during exercise.


Subject(s)
Body Temperature Regulation , Sports , Humans , Male , Female , Body Temperature Regulation/physiology , Sweating , Skin Temperature , Exercise/physiology , Hot Temperature
16.
Eur J Appl Physiol ; 123(8): 1629-1635, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36952087

ABSTRACT

Repeated heat treatment has been shown to induce oxidative adaptations in cell cultures and rodents, but similar work within human models is scarce. This study investigated the effects of 6 weeks of localized heat therapy on near-infrared spectroscopy-(NIRS) derived indices of muscle oxidative and microvascular function. Twelve physically active participants (8 males and 4 females, age: 34.9 ± 5.9 years, stature: 175 ± 7 cm, body mass: 76.7 ± 13.3 kg) undertook a 6-week intervention, where adhesive heat pads were applied for 8 h/day, 5 days/week, on one calf of each participant, while the contralateral leg acted as control. Prior to and following the intervention, the microvascular function was assessed using NIRS-based methods, where 5 min of popliteal artery occlusion was applied, and the reperfusion (i.e., re-saturation rate, re-saturation amplitude, and hyperemic response) was monitored for 2 min upon release. Participants also performed a 1-min isometric contraction of the plantar flexors (30% maximal voluntary contraction), following which a further 2 min interval was undertaken for the assessment of recovery kinetics. A 20-min time interval was allowed before the assessment protocol was repeated on the contralateral leg. Repeated localized heating of the gastrocnemius did not influence any of the NIRS-derive indices of microvascular or oxidative function (p > 0.05) following 6 weeks of treatment. Our findings indicate that localized heating via the use of adhesive heat pads may not be a potent stimulus for muscle adaptations in physically active humans.


Subject(s)
Hot Temperature , Peripheral Arterial Disease , Male , Female , Humans , Adult , Muscle, Skeletal/physiology , Leg , Oxidative Stress , Oxygen Consumption/physiology
17.
Med Sci Sports Exerc ; 55(6): 1076-1086, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36719653

ABSTRACT

PURPOSE: Heat acclimation (HA) is recommended before competing in hot and humid conditions. HA has also been recently suggested to increase muscle strength, but its effects on human's muscle and tendon mechanical properties are not yet fully understood. This study investigated the effect of active HA on gastrocnemius medialis (GM) muscle-tendon properties. METHODS: Thirty recreationally active participants performed 13 low-intensity cycling sessions, distributed over a 17-d period in hot (HA = ~38°C, ~58% relative humidity; n = 15) or in temperate environment (CON = ~23°C, ~35% relative humidity; n = 15). Mechanical data and high-frame rate ultrasound images were collected during electrically evoked and voluntary contractions pre- and postintervention. Shear modulus was measured at rest in GM, and vertical jump performance was assessed. RESULTS: Core temperature decreased from the first to the last session in HA (-0.4°C ± 0.3°C; P = 0.015), while sweat rate increased (+0.4 ± 0.3 L·h -1 ; P = 0.010), suggesting effective HA, whereas no changes were observed in CON (both P ≥ 0.877). Heart rate was higher in HA versus CON and decreased throughout intervention in groups (both P ≤ 0.008), without an interaction effect ( P = 0.733). Muscle-tendon unit properties (i.e., maximal and explosive isometric torque production, contractile properties, voluntary activation, joint and fascicular force-velocity relationship, passive muscle, and active tendon stiffness) and vertical jump performance did not show training ( P ≥ 0.067) or group-training interaction ( P ≥ 0.232) effects. CONCLUSIONS: Effective active HA does not alter muscle-tendon properties. Preparing hot and humid conditions with active HA can be envisaged in all sporting disciplines without the risk of impairing muscle performance.


Subject(s)
Hot Temperature , Tendons , Humans , Tendons/diagnostic imaging , Tendons/physiology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Muscle Contraction/physiology , Acclimatization/physiology
18.
Br J Sports Med ; 57(1): 1, 2023 01.
Article in English | MEDLINE | ID: mdl-36418148

Subject(s)
Athletes , Humans
19.
Sports Biomech ; 22(7): 863-873, 2023 Jul.
Article in English | MEDLINE | ID: mdl-32538689

ABSTRACT

This study describes asymmetry in the main running mechanical variables during repeated treadmill sprints in elite female athletes and examines whether inter-limb differences in sprinting mechanics increase with fatigue. Eighteen elite female players (French national Rugby Sevens team) performed 8 × 5-s sprints (25-s rest) on an instrumented motorised sprint treadmill. The group mean 'symmetry angle' (SA) scores were ~1-2% for contact time (1.6 ± 0.6%), aerial time (2.1 ± 0.8%), step frequency (1.3 ± 0.5%) and step length (1.6 ± 0.6%). Mean vertical and horizontal forces, vertical and leg stiffness presented SA values of 1.7 ± 1.5%, 2.4 ± 1.2%, 2.6 ± 0.2% and 2.5 ± 0.2%, respectively. The SA scores were ~2-8% for duration of braking (6.9 ± 5.0%) and propulsive (6.5 ± 4.4%) phases, peak braking (6.5 ± 2.5%) and propulsive (1.6 ± 0.9%) forces as well as net (5.8 ± 5.6%), braking (7.7 ± 5.3%) and propulsive (2.7 ± 1.6%) impulses. However, there was no influence of sprint repetition number on SA scores for tested variables (P > 0.05). In elite female Rugby Sevens players, there was no noticeable difference in asymmetries for the great majority of stride mechanical variables during repeated treadmill sprints.


Subject(s)
Athletic Performance , Running , Humans , Female , Rugby , Biomechanical Phenomena , Exercise Test
20.
Br J Sports Med ; 57(1): 8-25, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36150754

ABSTRACT

This document presents the recommendations developed by the IOC Medical and Scientific Commission and several international federations (IF) on the protection of athletes competing in the heat. It is based on a working group, meetings, field experience and a Delphi process. The first section presents recommendations for event organisers to monitor environmental conditions before and during an event; to provide sufficient ice, shading and cooling; and to work with the IF to remove regulatory and logistical limitations. The second section summarises recommendations that are directly associated with athletes' behaviours, which include the role and methods for heat acclimation; the management of hydration; and adaptation to the warm-up and clothing. The third section explains the specific medical management of exertional heat stroke (EHS) from the field of play triage to the prehospital management in a dedicated heat deck, complementing the usual medical services. The fourth section provides an example for developing an environmental heat risk analysis for sport competitions across all IFs. In summary, while EHS is one of the leading life-threatening conditions for athletes, it is preventable and treatable with the proper risk mitigation and medical response. The protection of athletes competing in the heat involves the close cooperation of the local organising committee, the national and international federations, the athletes and their entourages and the medical team.


Subject(s)
Heat Stroke , Sports , Humans , Hot Temperature , Sports/physiology , Acclimatization/physiology , Heat Stroke/prevention & control , Athletes
SELECTION OF CITATIONS
SEARCH DETAIL