Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Med Chem ; 12(7): 1164-1173, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34355182

ABSTRACT

The discovery of potent, kinome selective, brain penetrant LRRK2 inhibitors is the focus of extensive research seeking new, disease-modifying treatments for Parkinson's disease (PD). Herein, we describe the discovery and evolution of a picolinamide-derived lead series. Our initial optimization efforts aimed at improving the potency and CLK2 off-target selectivity of compound 1 by modifying the heteroaryl C-H hinge and linker regions. This resulted in compound 12 which advanced deep into our research operating plan (ROP) before heteroaryl aniline metabolite 14 was characterized as Ames mutagenic, halting its progression. Strategic modifications to our ROP were made to enable early de-risking of putative aniline metabolites or hydrolysis products for mutagenicity in Ames. This led to the discovery of 3,5-diaminopyridine 15 and 4,6-diaminopyrimidine 16 as low risk for mutagenicity (defined by a 3-strain Ames negative result). Analysis of key matched molecular pairs 17 and 18 led to the prioritization of the 3,5-diaminopyridine sub-series for further optimization due to enhanced rodent brain penetration. These efforts culminated in the discovery of ethyl trifluoromethyl pyrazole 23 with excellent LRRK2 potency and expanded selectivity versus off-target CLK2.

2.
ACS Med Chem Lett ; 12(4): 540-547, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33854701

ABSTRACT

A novel series of histone deacetylase (HDAC) inhibitors lacking a zinc-binding moiety has been developed and described herein. HDAC isozyme profiling and kinetic studies indicate that these inhibitors display a selectivity preference for HDACs 1, 2, 3, 10, and 11 via a rapid equilibrium mechanism, and crystal structures with HDAC2 confirm that these inhibitors do not interact with the catalytic zinc. The compounds are nonmutagenic and devoid of electrophilic and mutagenic structural elements and exhibit off-target profiles that are promising for further optimization. The efficacy of this new class in biochemical and cell-based assays is comparable to the marketed HDAC inhibitors belinostat and vorinostat. These results demonstrate that the long-standing pharmacophore model of HDAC inhibitors requiring a metal binding motif should be revised and offers a distinct class of HDAC inhibitors.

3.
Nat Commun ; 12(1): 815, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547286

ABSTRACT

Narcolepsy type 1 (NT1) is a chronic neurological disorder that impairs the brain's ability to control sleep-wake cycles. Current therapies are limited to the management of symptoms with modest effectiveness and substantial adverse effects. Agonists of the orexin receptor 2 (OX2R) have shown promise as novel therapeutics that directly target the pathophysiology of the disease. However, identification of drug-like OX2R agonists has proven difficult. Here we report cryo-electron microscopy structures of active-state OX2R bound to an endogenous peptide agonist and a small-molecule agonist. The extended carboxy-terminal segment of the peptide reaches into the core of OX2R to stabilize an active conformation, while the small-molecule agonist binds deep inside the orthosteric pocket, making similar key interactions. Comparison with antagonist-bound OX2R suggests a molecular mechanism that rationalizes both receptor activation and inhibition. Our results enable structure-based discovery of therapeutic orexin agonists for the treatment of NT1 and other hypersomnia disorders.


Subject(s)
Aminopyridines/chemistry , Azepines/chemistry , Orexin Receptor Antagonists/chemistry , Orexin Receptors/chemistry , Peptides/chemistry , Sleep Aids, Pharmaceutical/chemistry , Sulfonamides/chemistry , Triazoles/chemistry , Aminopyridines/metabolism , Azepines/metabolism , Binding Sites , Cloning, Molecular , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Molecular Dynamics Simulation , Orexin Receptor Antagonists/metabolism , Orexin Receptors/agonists , Orexin Receptors/metabolism , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sleep Aids, Pharmaceutical/metabolism , Sulfonamides/metabolism , Triazoles/metabolism
4.
Bioorg Med Chem Lett ; 27(9): 2038-2046, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28285916

ABSTRACT

HIV integrase strand transfer inhibitors (InSTIs) represent an important class of antiviral therapeutics with proven efficacy and excellent tolerability for the treatment of HIV infections. In 2007, Raltegravir became the first marketed strand transfer inhibitor pioneering the way to a first-line therapy for treatment-naïve patients. Challenges with this class of therapeutics remain, including frequency of the dosing regimen and the genetic barrier to resistance. To address these issues, research towards next-generation integrase inhibitors has focused on imparting potency against RAL-resistent mutants and improving pharmacokinetic profiles. Herein, we detail medicinal chemistry efforts on a novel class of 2-pyridinone aminal InSTIs, inpsired by MK-0536, which led to the discovery of important lead molecules for our program. Systematic optimization carried out at the amide and aminal positions on the periphery of the core provided the necessary balance of antiviral activity and physiochemical properties. These efforts led to a novel aminal lead compound with the desired virological profile and preclinical pharmacokinetic profile to support a once-daily human dose prediction.


Subject(s)
HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV-1/enzymology , Pyridones/chemistry , Pyridones/pharmacology , Animals , Dogs , HIV Infections/drug therapy , HIV Integrase Inhibitors/pharmacokinetics , HIV-1/drug effects , Humans , Molecular Docking Simulation , Pyridones/pharmacokinetics
5.
Bioorg Med Chem Lett ; 26(11): 2631-5, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27106707

ABSTRACT

Familial Parkinson's disease cases have recently been associated with the leucine rich repeat kinase 2 (LRRK2) gene. It has been hypothesized that inhibition of the LRRK2 protein may have the potential to alter disease pathogenesis. A dihydrobenzothiophene series of potent, selective, orally bioavailable LRRK2 inhibitors were identified from a high-throughput screen of the internal Merck sample collection. Initial SAR studies around the core established the series as a tractable small molecule lead series of LRRK2 inhibitors for potential treatment of Parkinson's disease. It was also found that incorporation of a lactam into the core drastically improved the CNS and DMPK properties of these small molecules.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Thiophenes/pharmacology , Administration, Oral , Biological Availability , Dose-Response Relationship, Drug , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry
6.
J Med Chem ; 59(7): 3489-98, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27011007

ABSTRACT

Herein, we describe the development of a functionally selective liver X receptor ß (LXRß) agonist series optimized for Emax selectivity, solubility, and physical properties to allow efficacy and safety studies in vivo. Compound 9 showed central pharmacodynamic effects in rodent models, evidenced by statistically significant increases in apolipoprotein E (apoE) and ATP-binding cassette transporter levels in the brain, along with a greatly improved peripheral lipid safety profile when compared to those of full dual agonists. These findings were replicated by subchronic dosing studies in non-human primates, where cerebrospinal fluid levels of apoE and amyloid-ß peptides were increased concomitantly with an improved peripheral lipid profile relative to that of nonselective compounds. These results suggest that optimization of LXR agonists for Emax selectivity may have the potential to circumvent the adverse lipid-related effects of hepatic LXR activity.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoproteins E/cerebrospinal fluid , Benzamides/chemistry , Benzamides/pharmacology , Orphan Nuclear Receptors/agonists , Piperidines/chemistry , Piperidines/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Dogs , Hep G2 Cells , Humans , Lipids/analysis , Liver/drug effects , Liver/metabolism , Liver X Receptors , Locomotion/drug effects , Macaca mulatta , Madin Darby Canine Kidney Cells , Mice , Mice, Transgenic
8.
J Med Chem ; 58(20): 8154-65, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26397965

ABSTRACT

The search for new molecular constructs that resemble the critical two-metal binding pharmacophore required for HIV integrase strand transfer inhibition represents a vibrant area of research within drug discovery. Here we present the discovery of a new class of HIV integrase strand transfer inhibitors based on the 2-pyridinone core of MK-0536. These efforts led to the identification of two lead compounds with excellent antiviral activity and preclinical pharmacokinetic profiles to support a once-daily human dose prediction. Dose escalating PK studies in dog revealed significant issues with limited oral absorption and required an innovative prodrug strategy to enhance the high-dose plasma exposures of the parent molecules.


Subject(s)
HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/pharmacology , Pyridones/chemical synthesis , Pyridones/pharmacology , Animals , Area Under Curve , Dogs , Dose-Response Relationship, Drug , Drug Design , HIV Integrase/drug effects , HIV Integrase/metabolism , HIV Integrase Inhibitors/pharmacokinetics , HIV-1/drug effects , HIV-1/enzymology , HIV-1/genetics , Humans , Models, Molecular , Prodrugs , Pyridones/pharmacokinetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...