Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Omega ; 6(45): 30281-30291, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34805660

ABSTRACT

An intrinsic ion sensitivity exceeding the Nernst-Boltzmann limit and an sp 2 -hybridized carbon structure make graphene a promising channel material for realizing ion-sensitive field-effect transistors with a stable solid-liquid interface under biased conditions in buffered salt solutions. Here, we examine the performance of graphene field-effect transistors coated with ion-selective membranes as a tool to selectively detect changes in concentrations of Ca2+, K+, and Na+ in individual salt solutions as well as in buffered Locke's solution. Both the shift in the Dirac point and transconductance could be measured as a function of ion concentration with repeatability exceeding 99.5% and reproducibility exceeding 98% over 60 days. However, an enhancement of selectivity, by about an order magnitude or more, was observed using transconductance as the indicator when compared to Dirac voltage, which is the only factor reported to date. Fabricating a hexagonal boron nitride multilayer between graphene and oxide further increased the ion sensitivity and selectivity of transconductance. These findings incite investigating ion sensitivity of transconductance in alternative architectures as well as urge the exploration of graphene transistor arrays for biomedical applications.

2.
Addit Manuf ; 462021 Oct.
Article in English | MEDLINE | ID: mdl-34557385

ABSTRACT

The aligned bond interfaces resulting from the layer-by-layer nature of material extrusion-based additive manufacturing (MEAM) leads to anisotropic properties in printed parts. This study examines the anisotropy in electrical impedance and its variation with print parameters. Samples consisting of a stack of filaments are used to study the interfaces, which are the fundamental building block of MEAM, in a controlled manner. Anisotropy was quantified using the ratio of the impedance measured across (Z-specimen) and along (F-specimen) the fiber orientation. Although the conductivity of the material was found to change with extrusion temperature, the Z/F ratio was found to be constant (2.15 ± 0.23), regardless of the variation in thermal conditions imposed by varying extrusion temperature and print speed. By varying the distance over which impedance was measured, impedance scaling was understood. The scaling was found to be dependent on the extrusion temperature regardless of the variation of print speed by 266%; ~12.5 Ω per interface for 190 °C while ~6.5 Ω per interface for 230 °C, one-third of which was found to be contributed by fiber. While studying the cause for significant impedance at the interface, scanning electron microscopy study shows absence of airgaps at the interface, and energy dispersion spectroscopy shows absence of oxidation at the interface. The implications of specimen design and characterization proposed here allows for examination of a wide range of print parameters with reduction in material, time, and cost. Thus, by investigating the role of print parameters and scaling of impedance with interfaces, we seek to provide a framework to model and predict electrical behavior of electric sensors and actuators made with MEAM.

3.
Nanotechnology ; 30(27): 275301, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-30893661

ABSTRACT

Here, we characterize the patterns obtained through local oxidation nanolithography (LON) on highly oriented pyrolytic graphite as the write bias, speed, and force were varied. Different types of patterns-bumps, cracked bumps, and trenches-were obtained and characterized using four shape descriptors-pattern width, pattern height, cut width and cut depth. With an increase in write bias the obtained pattern type varied from bumps to cracked bumps to trenches. The use of a bias above 7.25 V resulted in trenches with increased variability in shape descriptor values. Similarly, an increase in write speed demonstrated a transition from trenches to cracked bumps to bumps. An increase in write force from 75 to 150 nN showed a shift in the threshold voltage from 4.25 V to just under 3.75 V and formed cracked bumps instead of bumps. These findings help solve the mystery of why bumps were not reported at threshold voltages before 2008. We believe these findings will be enable uniform reproduction and report of LON pattern.

4.
IEEE Sens J ; 19(19): 8758-8766, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-33746620

ABSTRACT

Here, we examine the concept of frequency domain sensing with solution-gated graphene field-effect transistors, where a sine wave of primary frequency (1f) was applied at the gate and modulation of the power spectral density (PSD) of the drain-source current at 1f, 2f, and 3f was examined as the salt in the gate electrolyte was switched from KCl to CaCl2, and their concentrations were varied. The PSD at 1f, 2f, and 3f increased with the concentration of KCl or CaCl2, with the PSD at 1f being the most sensitive. We further correlated these changes to the shift in Dirac point. Switching the graphene substrate from oxide to hexagonal boron nitride, led to an improved device-to-device reproducibility and a significant reduction of noise, which translated to a higher signal-to-noise ratio and resolution in sensing salt concentrations. The signal-to-noise ratio at 1f was found to be a logarithmic function of KCl or CaCl2 concentration in the 0.1 to 1000 mM range.

5.
ACS Biomater Sci Eng ; 4(2): 675-681, 2018 Feb 12.
Article in English | MEDLINE | ID: mdl-33418755

ABSTRACT

Graphene, because its outstanding electrical and optical properties, has been an attractive material for developing biosensors and bioelectronics. The stability of proteins on graphene, as a function of its secondary structure, has been studied computationally; however, there has been a lack of experimental validity of such simulations results. This study examines the stability of two biosensing enzymes on graphene and in solution: horseradish peroxidase (an all α-helix protein) and glucose oxidase (a protein with both α-helix and ß-sheet content). At three different temperatures (4, 20, and 37 °C), glucose oxidase tethered to graphene was found to be more stable than when in solution. In contrast, horseradish peroxidase tethered to graphene showed rapid loss in activity than when in solution. This is the first experimental evidence showing differential stability of proteins on graphene, and we believe this is due to the difference in the secondary structure of the proteins.

6.
Nanomaterials (Basel) ; 7(10)2017 Oct 21.
Article in English | MEDLINE | ID: mdl-29065488

ABSTRACT

This paper reports our findings on how to prepare a graphene oxide-based gas sensor for sensing fast pulses of volatile organic compounds with a better signal-to-noise ratio. We use rapid acetone pulses of varying concentrations to test the sensors. First, we compare the effect of graphene oxide deposition method (dielectrophoresis versus solvent evaporation) on the sensor's response. We find that dielectrophoresis yields films with uniform coverage and better sensor response. Second, we examine the effect of chemical reduction. Contrary to prior reports, we find that graphene oxide reduction leads to a reduction in sensor response and current noise, thus keeping the signal-to-noise ratio the same. We found that if we sonicated the sensor in acetone, we created a sensor with a few flakes of reduced graphene oxide. Such sensors provided a higher signal-to-noise ratio that could be correlated to the vapor concentration of acetone with better repeatability. Modeling shows that the sensor's response is due to one-site Langmuir adsorption or an overall single exponent process. Further, the desorption of acetone as deduced from the sensor recovery signal follows a single exponent process. Thus, we show a simple way to improve the signal-to-noise ratio in reduced graphene oxide sensors.

7.
Anal Chem ; 88(5): 2605-13, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26829879

ABSTRACT

This paper presents results on immunobeads-based isolation of rare bacteria and their capture at a boron-doped ultrananocrystalline diamond (BD-UNCD) electrode in a microfluidic dielectrophoretic preconcentrator. We systematically vary the bead surface chemistry and the BD-UNCD surface chemistry and apply dielectrophoresis to improve the specific and the nonspecific capture of bacteria or beads. Immunobeads were synthesized by conjugating antibodies to epoxy-/sulfate, aldehyde-/sulfate, or carboxylate-modified beads with or without poly(ethylene glycol) (PEG) coimmobilization. The carboxylate-modified beads with PEG provided the highest capture efficiency (∼65%) and selectivity (∼95%) in isolating live Escherichia coli O157:H7 from cultures containing 1000 E. coli O157:H7 colony-forming units (cfu)/mL, or ∼500 E. coli O157:H7 and ∼500 E. coli K12 cfu/mL. Higher specificity was achieved with the addition of PEG to the antibody-functionalized bead surface, highest with epoxy-/sulfate beads (85-86%), followed by carboxylate-modified beads (76-78%) and aldehyde-/sulfate beads (74-76%). The bare BD-UNCD electrodes of the preconcentrator successfully withstood 240 kV/m for 100 min that was required for the microfluidic dielectrophoresis of 1 mL of sample. As expected, the application of dielectrophoresis increased the specific and the nonspecific capture of immunobeads at the BD-UNCD electrodes; however, the capture specificity remained unaltered. The addition of PEG to the antibody-functionalized BD-UNCD surface had little effect on the specificity in immunobeads capture. These results warrant the fabrication of electrical biosensors with BD-UNCD so that dielectrophoretic preconcentration can be performed directly at the biosensing electrodes.


Subject(s)
Biosensing Techniques/methods , Boron/chemistry , Electrodes , Escherichia coli/isolation & purification , Nanodiamonds/chemistry , Animals , Biosensing Techniques/instrumentation , Electrophoresis , Immunoglobulin G/chemistry , Mice , Polystyrenes/chemistry
8.
Article in English | MEDLINE | ID: mdl-24896312

ABSTRACT

Despite continuing research efforts, timely and simple pathogen detection with a high degree of sensitivity and specificity remains an elusive goal. Given the recent explosion of sensor technologies, significant strides have been made in addressing the various nuances of this important global challenge that affects not only the food industry but also human health. In this review, we provide a summary of the various ongoing efforts in pathogen detection and sample preparation in areas related to Fourier transform infrared and Raman spectroscopy, light scattering, phage display, micro/nanodevices, and nanoparticle biosensors. We also discuss the advantages and potential limitations of the detection methods and suggest next steps for further consideration.


Subject(s)
Bacteria/pathogenicity , Biosensing Techniques/methods , Food Analysis/methods , Food Contamination/analysis , Food Microbiology , Nanotechnology/methods , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Humans
9.
ACS Nano ; 8(2): 1419-28, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24397797

ABSTRACT

While chemical vapor deposition of diamond films is currently cost prohibitive for biosensor construction, in this paper, we show that sonication-assisted nanostructuring of biosensing electrodes with nanodiamonds (NDs) allows harnessing the hydrolytic stability of the diamond biofunctionalization chemistry for real-time continuous sensing, while improving the detector sensitivity and stability. We find that the higher surface coverages were important for improved bacterial capture and can be achieved through proper choice of solvent, ND concentration, and seeding time. A mixture of methanol and dimethyl sulfoxide provides the highest surface coverage (33.6 ± 3.4%) for the NDs with positive zeta-potential, compared to dilutions of dimethyl sulfoxide with acetone, ethanol, isopropyl alcohol, or water. Through impedance spectroscopy of ND-seeded interdigitated electrodes (IDEs), we found that the ND seeds serve as electrically conductive islands only a few nanometers apart. Also we show that the seeded NDs are amply hydrogenated to be decorated with antibodies using the UV-alkene chemistry, and higher bacterial captures can be obtained compared to our previously reported work with diamond films. When sensing bacteria from 10(6) cfu/mL E. coli O157:H7, the resistance to charge transfer at the IDEs decreased by ∼ 38.8%, which is nearly 1.5 times better than that reported previously using redox probes. Further in the case of 10(8) cfu/mL E. coli O157:H7, the charge transfer resistance changed by ∼ 46%, which is similar to the magnitude of improvement reported using magnetic nanoparticle-based sample enrichment prior to impedance detection. Thus ND seeding allows impedance biosensing in low conductivity solutions with competitive sensitivity.


Subject(s)
Antibodies/immunology , Biosensing Techniques , Electrodes , Nanodiamonds , Bacteria/isolation & purification , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
10.
Adv Funct Mater ; 21(6): 1040-1050, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21949497

ABSTRACT

Immunoassays for detection of bacterial pathogens rely on the selectivity and stability of bio-recognition elements such as antibodies tethered to sensor surfaces. The search for novel surfaces that improve the stability of biomolecules and assay performance has been pursued for a long time. However, the anticipated improvements in stability have not been realized in practice under physiological conditions because the surface functionalization layers on commonly used substrates, silica and gold, are themselves unstable on time scales of days. In this paper, we show that covalent linking of antibodies to diamond surfaces leads to substantial improvements in biological activity of proteins as measured by the ability to selectively capture cells of the pathogenic bacterium Escherichia coli O157:H7 even after exposure to buffer solutions at 37 °C for extended periods of time, approaching 2 weeks. Our results from ELISA, XPS, fluorescence microscopy, and MD simulations suggest that by using highly stable surface chemistry and controlling the nanoscale organization of the antibodies on the surface, it is possible to achieve significant improvements in biological activity and stability. Our findings can be easily extended to functionalization of micro and nanodimensional sensors and structures of biomedical diagnostic and therapeutic interest.

11.
Chemistry ; 17(27): 7685-93, 2011 Jun 27.
Article in English | MEDLINE | ID: mdl-21611986

ABSTRACT

Herein, we discuss the synthesis as well as material and photochemical characterization of nanometer-sized Ta(2)O(5) decorated, in a controlled fashion, on top of 20 nm diameter SiO(2) particles to yield a composite oxide with a tunable band-gap width. Particular emphasis is paid to control of particle size, and control of the distribution of the overlying oxide. The nanoscale dimension imparts a high surface area and introduces quantum confinement effects that displace the conduction band more negatively and the valence band more positively on the electrochemical scale of potentials. This band shift results in an increase of the number of possible participants in photocatalytic reactions. The band shift is shown to result in an increase in driving force for thermodynamically feasible reactions. By decorating SiO(2) with smaller-sized Ta(2)O(5), the interplay of the Lewis acidity of SiO(2) and the contact area between Ta(2)O(5) and SiO(2) is utilized to develop a photocatalyst with higher photoactivity than pure Ta(2)O(5).

12.
Proc Natl Acad Sci U S A ; 108(3): 983-8, 2011 Jan 18.
Article in English | MEDLINE | ID: mdl-20884854

ABSTRACT

Carbon is an extremely versatile family of materials with a wide range of mechanical, optical, and mechanical properties, but many similarities in surface chemistry. As one of the most chemically stable materials known, carbon provides an outstanding platform for the development of highly tunable molecular and biomolecular interfaces. Photochemical grafting of alkenes has emerged as an attractive method for functionalizing surfaces of diamond, but many aspects of the surface chemistry and impact on biological recognition processes remain unexplored. Here we report investigations of the interaction of functionalized diamond surfaces with proteins and biological cells using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and fluorescence methods. XPS data show that functionalization of diamond with short ethylene glycol oligomers reduces the nonspecific binding of fibrinogen below the detection limit of XPS, estimated as > 97% reduction over H-terminated diamond. Measurements of different forms of diamond with different roughness are used to explore the influence of roughness on nonspecific binding onto H-terminated and ethylene glycol (EG)-terminated surfaces. Finally, we use XPS to characterize the chemical stability of Escherichia coli K12 antibodies on the surfaces of diamond and amine-functionalized glass. Our results show that antibody-modified diamond surfaces exhibit increased stability in XPS and that this is accompanied by retention of biological activity in cell-capture measurements. Our results demonstrate that surface chemistry on diamond and other carbon-based materials provides an excellent platform for biomolecular interfaces with high stability and high selectivity.


Subject(s)
Antibodies, Bacterial/chemistry , Chemistry, Physical/methods , Diamond/chemistry , Fibrinogen/chemistry , Microscopy, Atomic Force/methods , Photoelectron Spectroscopy/methods , Avidin/chemistry , Escherichia coli K12/immunology , Ethylene Glycol , Fluorescence , Protein Binding , Surface Properties
13.
Anal Chem ; 81(9): 3471-7, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19351142

ABSTRACT

This article demonstrates the feasibility of making a partially buried micro gas chromatography (micro-GC) column with a rounded channel wall profile, which enables coating the stationary phase more uniformly and shows better separation characteristics than a square deep reactive ion etched (DRIE) wall profile. A buried structure fabrication method was adapted to fabricate 34 cm long, 165 microm wide, and 65 microm deep partially buried microcolumns, which had a unique rounded microcolumn wall profile similar to that of a flattened circular tube. The separation characteristics were compared to that of a 34 cm long, 100 microm x 100 microm square DRIE microcolumn, which had a similar hydraulic diameter. Minimum height equivalent to a theoretical plate (HETP) and reduced HETP of 0.39 mm and 6.02, respectively, with a retention factor of 6.3 were obtained on the coated partially buried microcolumn compared to 0.66 mm and 6.73, respectively, on the coated square DRIE microcolumn with a similar retention factor. The partially buried microcolumn was found to perform closer to the theoretical approximation and this could be attributed to the uniform phase deposition in the partially buried microcolumn compared to the square DRIE microcolumn. A 10 component mix was separated on the partially buried microcolumn in 3.8 s with the maximum peak width at half-height equal to 0.2 s, while a similar mix separated at higher pressure and temperature conditions on the square DRIE microcolumn in 4.6 s. The rounded corners allowed depositing thinner stationary phase, which was reflected in the faster elution of n-C(12) on the partially buried microcolumn compared to the square DRIE microcolumn. The better performance of the partially buried microcolumn may be attributed to either the rounded channel wall profile, the clean channel structures produced by the fabrication process, or the double-etched wall profile, which lowers the Taylor-Aris dispersion.


Subject(s)
Chromatography, Gas/instrumentation , Microtechnology , Feasibility Studies , Time Factors
15.
Anal Chem ; 80(11): 4087-94, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18442266

ABSTRACT

This article demonstrates how to prepare microfabricated columns (microcolumns) for organophosphonate and organosulfur compound separation that rival the performance of commercial capillary columns. Approximately 16,500 theoretical plates were generated with a 3 m long OV-5-coated microcolumn with a 0.25 microm phase thickness using helium as the carrier gas at 20 cm/s. Key to the advance was the development of deactivation procedures appropriate for silicon microcolumns with Pyrex tops. Active sites in a silicon-Pyrex microcolumn cause peak tailing and unwanted adsorption. Experimentally, we found that organosilicon hydride deactivation lowers adsorption activity in microcolumns more than silazane and silane treatments. But without further treatment, the phosphonate peaks continue to tail after the coating process. We found that heat treatment with pinacolyl methylphosphonic acid (PMP) eliminated the phosphonate peak tailing. In contrast, conventional resilylation employing N, O-bis(trimethylsilyl)acetamide, hexamethyldisilazane, and 1-(trimethylsilyl)imidazole does not eliminate peak tailing. Column activity tests show that the PMP treatment also improves the peaks for 2,6-dimethyl aniline, 1-octanol, and 1-decanol implying a decrease in the column's hydrogen bonding sites with the PMP treatment. FT-IR analysis shows that exposure to PMP forms a bond to the stationary phase that deactivates the active sites responsible for organophosphonate peak tailing.


Subject(s)
Chromatography, Gas/instrumentation , Organophosphonates/chemistry , Organophosphonates/isolation & purification , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/isolation & purification , Sulfur Compounds/chemistry , Sulfur Compounds/isolation & purification , Soman/analogs & derivatives , Soman/chemistry , Spectroscopy, Fourier Transform Infrared , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL