Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(22): 4912-4917, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35634986

ABSTRACT

The ζ-potential of a colloidal quantum dot (QD) in solution has a strong impact on its photoluminescence emission quantum yield as well as the population lifetime. In this study we show that varying the surface charged groups on CdSe/ZnS QDs allows one to tune the ζ-potential and, with it, to control the quantum yield of emission as well as the recombination dynamics. We infer that the net charge density within the slipping plane around the QD in the solution strongly affects the nonradiative recombination processes, depending on the surface charge sign and value. For zwitterionic surface groups it is possible to tune the ζ-potential and the quantum yield by pH. As a general trend, QDs with zwitterionic surface groups produce a low (absolute) ζ-potential value and exhibit the highest quantum yield. Our results pave the way to, for example, future intracellular, time-resolved pH sensing applications with similar systems.

2.
Nanotechnology ; 31(43): 435102, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-32663818

ABSTRACT

Since CdSe nanoplatelets were reported to have a ten-fold higher two-photon (2P) absorption coefficient as compared to quantum dots, we examined their applicability for cell labeling and 2P imaging. CdSSe/ZnCdS core-shell nanoplatelets and CdSe/ZnS quantum dots, both emitting at 585 nm were encapsulated with an amphiphilic zwitterionic polymer having slightly positive zeta potential. As measured with flow cytometry, glioma C6 cells demonstrated equally efficient uptake of nanoplatelets and quantum dots, despite the different sizes of these two types of nanoparticles. 2P fluorescence microscopy revealed ca. two orders of magnitude higher fluorescence response from nanoplatelets thus offering a chance to use them as highly efficient 2P fluorescent labels in biomedicine.


Subject(s)
Cadmium Compounds/chemistry , Nanostructures/chemistry , Quantum Dots/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Cell Line, Tumor , Glioma/diagnostic imaging , Humans , Male , Microscopy, Fluorescence , Optical Imaging
3.
Langmuir ; 32(8): 1955-61, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26866303

ABSTRACT

We present a method for the determination of the average number of polymer molecules on the surface of A(II)B(VI) luminescent core-shell nanocrystals (CdSe/ZnS, ZnSe/ZnS quantum dots, and CdS/ZnS nanorods) encapsulated with amphiphilic polymer. Poly(maleic anhydride-alt-1-tetradecene) (PMAT) was quantitatively labeled with amino-derivative of fluorescein and the average amount of PMAT molecules per single nanocrystal was determined using optical absorption of the dye in the visible spectral range. The average amount of PMAT molecules grows linearly with the surface area of all studied nanocrystals. However, the surface density of the monomer units increases nonlinearly with the surface area, because of the increased competition between PMAT molecules for Zn-hexanethiol surface binding sites. The average value of zeta potential (ζ = -35 mV) was found to be independent of the size, shape, and chemical composition of nanocrystals at fixed buffer parameters (carbonate-bicarbonate buffer, pH 9.5 and 5 mM ionic strength). This finding is expected to be useful for the determination of the surface density of remaining carboxyl groups in PMAT-encapsulated nanocrystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...