Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
PLoS Genet ; 19(12): e1011085, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38096267

ABSTRACT

Clonal genome evolution is a key feature of asexually reproducing species and human cancer development. While many studies have described the landscapes of clonal genome evolution in cancer, few determine the underlying evolutionary parameters from molecular data, and even fewer integrate theory with data. We derived theoretical results linking mutation rate, time, expansion dynamics, and biological/clinical parameters. Subsequently, we inferred time-resolved estimates of evolutionary parameters from mutation accumulation, mutational signatures and selection. We then applied this framework to predict the time of speciation of the marbled crayfish, an enigmatic, globally invasive parthenogenetic freshwater crayfish. The results predict that speciation occurred between 1986 and 1990, which is consistent with biological records. We also used our framework to analyze whole-genome sequencing datasets from primary and relapsed glioblastoma, an aggressive brain tumor. The results identified evolutionary subgroups and showed that tumor cell survival could be inferred from genomic data that was generated during the resection of the primary tumor. In conclusion, our framework allowed a time-resolved, integrated analysis of key parameters in clonally evolving genomes, and provided novel insights into the evolutionary age of marbled crayfish and the progression of glioblastoma.


Subject(s)
Glioblastoma , Animals , Humans , Glioblastoma/genetics , Genome/genetics , Astacoidea/genetics , Genomics , Biological Evolution , Mutation
2.
Environ Epigenet ; 9(1): dvad001, 2023.
Article in English | MEDLINE | ID: mdl-36936885

ABSTRACT

DNA methylation is an important epigenetic modification that is widely conserved across animal genomes. It is widely accepted that DNA methylation patterns can change in a context-dependent manner, including in response to changing environmental parameters. However, this phenomenon has not been analyzed in animal livestock yet, where it holds major potential for biomarker development. Building on the previous identification of population-specific DNA methylation in clonal marbled crayfish, we have now generated numerous base-resolution methylomes to analyze location-specific DNA methylation patterns. We also describe the time-dependent conversion of epigenetic signatures upon transfer from one environment to another. We further demonstrate production system-specific methylation signatures in shrimp, river-specific signatures in salmon and farm-specific signatures in chicken. Together, our findings provide a detailed resource for epigenetic variation in animal livestock and suggest the possibility for origin tracing of animal products by epigenetic fingerprinting.

3.
Front Aging ; 4: 1258183, 2023.
Article in English | MEDLINE | ID: mdl-38274286

ABSTRACT

Aging is a complex process characterized by the gradual decline of physiological functions, leading to increased vulnerability to age-related diseases and reduced quality of life. Alterations in DNA methylation (DNAm) patterns have emerged as a fundamental characteristic of aged human skin, closely linked to the development of the well-known skin aging phenotype. These changes have been correlated with dysregulated gene expression and impaired tissue functionality. In particular, the skin, with its visible manifestations of aging, provides a unique model to study the aging process. Despite the importance of epigenetic age clocks in estimating biological age based on the correlation between methylation patterns and chronological age, a second-generation epigenetic age clock, which correlates DNAm patterns with a particular phenotype, specifically tailored to skin tissue is still lacking. In light of this gap, we aimed to develop a novel second-generation epigenetic age clock explicitly designed for skin tissue to facilitate a deeper understanding of the factors contributing to individual variations in age progression. To achieve this, we used methylation patterns from more than 370 female volunteers and developed the first skin-specific second-generation epigenetic age clock that accurately predicts the skin aging phenotype represented by wrinkle grade, visual facial age, and visual age progression, respectively. We then validated the performance of our clocks on independent datasets and demonstrated their broad applicability. In addition, we integrated gene expression and methylation data from independent studies to identify potential pathways contributing to skin age progression. Our results demonstrate that our epigenetic age clock, VisAgeX, specifically predicting visual age progression, not only captures known biological pathways associated with skin aging, but also adds novel pathways associated with skin aging.

4.
Mol Syst Biol ; 18(9): e11073, 2022 09.
Article in English | MEDLINE | ID: mdl-36121124

ABSTRACT

Keratinocyte cancers (KC) are the most prevalent malignancies in fair-skinned populations, posing a significant medical and economic burden to health systems. KC originate in the epidermis and mainly comprise basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC). Here, we combined single-cell multi-omics, transcriptomics, and methylomics to investigate the epigenomic dynamics during epidermal differentiation. We identified ~3,800 differentially accessible regions between undifferentiated and differentiated keratinocytes, corresponding to regulatory regions associated with key transcription factors. DNA methylation at these regions defined AK/cSCC subtypes with epidermal stem cell- or keratinocyte-like features. Using cell-type deconvolution tools and integration of bulk and single-cell methylomes, we demonstrate that these subclasses are consistent with distinct cells-of-origin. Further characterization of the phenotypic traits of the subclasses and the study of additional unstratified KC entities uncovered distinct clinical features for the subclasses, linking invasive and metastatic KC cases with undifferentiated cells-of-origin. Our study provides a thorough characterization of the epigenomic dynamics underlying human keratinocyte differentiation and uncovers novel links between KC cells-of-origin and their prognosis.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Epigenomics , Humans , Keratinocytes/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transcription Factors
5.
Front Cell Dev Biol ; 9: 794506, 2021.
Article in English | MEDLINE | ID: mdl-34957121

ABSTRACT

DNA methylation is an important epigenetic modification that has been repeatedly implied in organismal adaptation. However, many previous studies that have linked DNA methylation patterns to environmental parameters have been limited by confounding factors, such as cell-type heterogeneity and genetic variation. In this study, we analyzed DNA methylation variation in marbled crayfish, a clonal and invasive freshwater crayfish that is characterized by a largely tissue-invariant methylome and negligible genetic variation. Using a capture-based subgenome bisulfite sequencing approach that covers a small, variably methylated portion of the marbled crayfish genome, we identified specific and highly localized DNA methylation signatures for specimens from geographically and ecologically distinct wild populations. These results were replicated both biologically and technically by re-sampling at different time points and by using independent methodology. Finally, we show specific methylation signatures for laboratory animals and for laboratory animals that were reared at a lower temperature. Our results thus demonstrate the existence of context-dependent DNA methylation signatures in a clonal animal.

6.
Nucleic Acids Res ; 49(5): 2759-2776, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33591310

ABSTRACT

The DNA damage-responsive tumor suppressors p53 and HIPK2 are well established regulators of cell fate decision-making and regulate the cellular sensitivity to DNA-damaging drugs. Here, we identify Deleted in Azoospermia-associated protein 2 (DAZAP2), a small adaptor protein, as a novel regulator of HIPK2 and specifier of the DNA damage-induced p53 response. Knock-down or genetic deletion of DAZAP2 strongly potentiates cancer cell chemosensitivity both in cells and in vivo using a mouse tumour xenograft model. In unstressed cells, DAZAP2 stimulates HIPK2 polyubiquitination and degradation through interplay with the ubiquitin ligase SIAH1. Upon DNA damage, HIPK2 site-specifically phosphorylates DAZAP2, which terminates its HIPK2-degrading function and triggers its re-localization to the cell nucleus. Interestingly, nuclear DAZAP2 interacts with p53 and specifies target gene expression through modulating a defined subset of p53 target genes. Furthermore, our results suggest that DAZAP2 co-occupies p53 response elements to specify target gene expression. Collectively, our findings propose DAZAP2 as novel regulator of the DNA damage-induced p53 response that controls cancer cell chemosensitivity.


Subject(s)
Carrier Proteins/metabolism , DNA Damage , Protein Serine-Threonine Kinases/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Nucleus/metabolism , Cells, Cultured , Gene Expression Regulation , Mice , Nuclear Proteins/metabolism , Promoter Regions, Genetic , RNA-Binding Proteins/physiology , Ubiquitin-Protein Ligases/metabolism
7.
Commun Biol ; 4(1): 76, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462334

ABSTRACT

The domestic chicken (Gallus gallus domesticus) is the globally most important source of commercially produced meat. While genetic approaches have played an important role in the development of chicken stocks, little is known about chicken epigenetics. We have systematically analyzed the chicken DNA methylation machinery and DNA methylation landscape. While overall DNA methylation distribution was similar to mammals, sperm DNA appeared hypomethylated, which correlates with the absence of the DNMT3L cofactor in the chicken genome. Additional analysis revealed the presence of low-methylated regions, which are conserved gene regulatory elements that show tissue-specific methylation patterns. We also used whole-genome bisulfite sequencing to generate 56 single-base resolution methylomes from various tissues and developmental time points to establish an LMR-based DNA methylation clock for broiler chicken age prediction. This clock was used to demonstrate epigenetic age acceleration in animals with experimentally induced inflammation. Our study provides detailed insights into the chicken methylome and suggests a novel application of the DNA methylation clock as a marker for livestock health.


Subject(s)
Chickens/metabolism , DNA Methylation , Epigenesis, Genetic , Epigenome , Animals , Chickens/genetics
8.
Genome Med ; 12(1): 46, 2020 05 25.
Article in English | MEDLINE | ID: mdl-32450911

ABSTRACT

BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid disease characterized by the early onset of age-related phenotypes including arthritis, loss of body fat and hair, and atherosclerosis. Cells from affected individuals express a mutant version of the nuclear envelope protein lamin A (termed progerin) and have previously been shown to exhibit prominent histone modification changes. METHODS: Here, we analyze the possibility that epigenetic deregulation of lamina-associated domains (LADs) is involved in the molecular pathology of HGPS. To do so, we studied chromatin accessibility (Assay for Transposase-accessible Chromatin (ATAC)-see/-seq), DNA methylation profiles (Infinium MethylationEPIC BeadChips), and transcriptomes (RNA-seq) of nine primary HGPS fibroblast cell lines and six additional controls, two parental and four age-matched healthy fibroblast cell lines. RESULTS: Our ATAC-see/-seq data demonstrate that primary dermal fibroblasts from HGPS patients exhibit chromatin accessibility changes that are enriched in LADs. Infinium MethylationEPIC BeadChip profiling further reveals that DNA methylation alterations observed in HGPS fibroblasts are similarly enriched in LADs and different from those occurring during healthy aging and Werner syndrome (WS), another premature aging disease. Moreover, HGPS patients can be stratified into two different subgroups according to their DNA methylation profiles. Finally, we show that the epigenetic deregulation of LADs is associated with HGPS-specific gene expression changes. CONCLUSIONS: Taken together, our results strongly implicate epigenetic deregulation of LADs as an important and previously unrecognized feature of HGPS, which contributes to disease-specific gene expression. Therefore, they not only add a new layer to the study of epigenetic changes in the progeroid syndrome, but also advance our understanding of the disease's pathology at the cellular level.


Subject(s)
Lamin Type A/genetics , Progeria/genetics , Cell Line , DNA Methylation , Epigenesis, Genetic , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Protein Domains
9.
Commun Biol ; 3(1): 188, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32327715

ABSTRACT

Fibroblasts are an essential cell population for human skin architecture and function. While fibroblast heterogeneity is well established, this phenomenon has not been analyzed systematically yet. We have used single-cell RNA sequencing to analyze the transcriptomes of more than 5,000 fibroblasts from a sun-protected area in healthy human donors. Our results define four main subpopulations that can be spatially localized and show differential secretory, mesenchymal and pro-inflammatory functional annotations. Importantly, we found that this fibroblast 'priming' becomes reduced with age. We also show that aging causes a substantial reduction in the predicted interactions between dermal fibroblasts and other skin cells, including undifferentiated keratinocytes at the dermal-epidermal junction. Our work thus provides evidence for a functional specialization of human dermal fibroblasts and identifies the partial loss of cellular identity as an important age-related change in the human dermis. These findings have important implications for understanding human skin aging and its associated phenotypes.


Subject(s)
Cellular Senescence/genetics , Fibroblasts/metabolism , Gene Expression Profiling , Single-Cell Analysis , Skin Aging/genetics , Skin/metabolism , Transcriptome , Adult , Age Factors , Aged , Aged, 80 and over , Cell Communication , Female , Humans , Male , Middle Aged , Phenotype , RNA-Seq , Skin/cytology
10.
Nat Microbiol ; 5(4): 610-619, 2020 04.
Article in English | MEDLINE | ID: mdl-32015497

ABSTRACT

Although much research has been done on the diversity of the gut microbiome, little is known about how it influences intestinal homeostasis under normal and pathogenic conditions. Epigenetic mechanisms have recently been suggested to operate at the interface between the microbiota and the intestinal epithelium. We performed whole-genome bisulfite sequencing on conventionally raised and germ-free mice, and discovered that exposure to commensal microbiota induced localized DNA methylation changes at regulatory elements, which are TET2/3-dependent. This culminated in the activation of a set of 'early sentinel' response genes to maintain intestinal homeostasis. Furthermore, we demonstrated that exposure to the microbiota in dextran sodium sulfate-induced acute inflammation results in profound DNA methylation and chromatin accessibility changes at regulatory elements, leading to alterations in gene expression programs enriched in colitis- and colon-cancer-associated functions. Finally, by employing genetic interventions, we show that microbiota-induced epigenetic programming is necessary for proper intestinal homeostasis in vivo.


Subject(s)
Colitis/genetics , DNA/genetics , Epigenesis, Genetic , Gastrointestinal Microbiome/physiology , Genome , Symbiosis/genetics , Animals , Colitis/chemically induced , Colitis/microbiology , Colitis/pathology , Colon/metabolism , Colon/microbiology , DNA/metabolism , DNA Methylation , Dextran Sulfate/administration & dosage , Germ-Free Life , Homeostasis/genetics , Inflammation , Male , Mice , Mice, Inbred C57BL , Whole Genome Sequencing
11.
Genome Res ; 29(5): 750-761, 2019 05.
Article in English | MEDLINE | ID: mdl-30948436

ABSTRACT

Coordinated changes of DNA (de)methylation, nucleosome positioning, and chromatin binding of the architectural protein CTCF play an important role for establishing cell-type-specific chromatin states during differentiation. To elucidate molecular mechanisms that link these processes, we studied the perturbed DNA modification landscape in mouse embryonic stem cells (ESCs) carrying a double knockout (DKO) of the Tet1 and Tet2 dioxygenases. These enzymes are responsible for the conversion of 5-methylcytosine (5mC) into its hydroxymethylated (5hmC), formylated (5fC), or carboxylated (5caC) forms. We determined changes in nucleosome positioning, CTCF binding, DNA methylation, and gene expression in DKO ESCs and developed biophysical models to predict differential CTCF binding. Methylation-sensitive nucleosome repositioning accounted for a significant portion of CTCF binding loss in DKO ESCs, whereas unmethylated and nucleosome-depleted CpG islands were enriched for CTCF sites that remained occupied. A number of CTCF sites also displayed direct correlations with the CpG modification state: CTCF was preferentially lost from sites that were marked with 5hmC in wild-type (WT) cells but not from 5fC-enriched sites. In addition, we found that some CTCF sites can act as bifurcation points defining the differential methylation landscape. CTCF loss from such sites, for example, at promoters, boundaries of chromatin loops, and topologically associated domains (TADs), was correlated with DNA methylation/demethylation spreading and can be linked to down-regulation of neighboring genes. Our results reveal a hierarchical interplay between cytosine modifications, nucleosome positions, and DNA sequence that determines differential CTCF binding and regulates gene expression.


Subject(s)
DNA Methylation , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Mouse Embryonic Stem Cells/enzymology , Proto-Oncogene Proteins/genetics , 5-Methylcytosine/chemistry , Animals , CCCTC-Binding Factor/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Dioxygenases , Insulator Elements/genetics , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/enzymology , Proto-Oncogene Proteins/metabolism
12.
Sci Rep ; 8(1): 16462, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30405203

ABSTRACT

Epigenetic mechanisms, such as CpG DNA methylation enable phenotypic plasticity and rapid adaptation to changing environments. CpG DNA methylation is established by DNA methyltransferases (DNMTs), which are well conserved across vertebrates and invertebrates. There are insects with functional DNA methylation despite lacking a complete set of Dnmts. But at least one of the enzymes, DNMT1, appears to be required to maintain an active DNA methylation system. The red flour beetle, Tribolium castaneum, lacks Dnmt3 but possesses Dnmt1 and it has been controversial whether it has a functional DNA methylation system. Using whole genome bisulfite sequencing, we did not find any defined patterns of CpG DNA methylation in embryos. Nevertheless, we found Dnmt1 expressed throughout the entire life cycle of the beetle, with mRNA transcripts significantly more abundant in eggs and ovaries. A maternal knockdown of Dnmt1 caused a developmental arrest in offspring embryos. We show that Dnmt1 plays an essential role in T. castaneum embryos and that its downregulation leads to an early developmental arrest. This function appears to be unrelated to DNA methylation, since we did not find any evidence for this modification. This strongly suggests an alternative role of this protein.


Subject(s)
Coleoptera/genetics , Coleoptera/metabolism , CpG Islands , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Animals , Epigenesis, Genetic , Gene Expression Regulation , Gene Knockdown Techniques , RNA Interference , Whole Genome Sequencing
13.
Epigenetics Chromatin ; 11(1): 57, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30286795

ABSTRACT

BACKGROUND: The parthenogenetic marbled crayfish (Procambarus virginalis) is a novel species that has rapidly invaded and colonized various different habitats. Adaptation to different environments appears to be independent of the selection of genetic variants, but epigenetic programming of the marbled crayfish genome remains to be understood. RESULTS: Here, we provide a comprehensive analysis of DNA methylation in marbled crayfish. Whole-genome bisulfite sequencing of multiple replicates and different tissues revealed a methylation pattern that is characterized by gene body methylation of housekeeping genes. Interestingly, this pattern was largely tissue invariant, suggesting a function that is unrelated to cell fate specification. Indeed, integrative analysis of DNA methylation, chromatin accessibility and mRNA expression patterns revealed that gene body methylation correlated with limited chromatin accessibility and stable gene expression, while low-methylated genes often resided in chromatin with higher accessibility and showed increased expression variation. Interestingly, marbled crayfish also showed reduced gene body methylation and higher gene expression variability when compared with their noninvasive mother species, Procambarus fallax. CONCLUSIONS: Our results provide novel insights into invertebrate gene body methylation and its potential role in adaptive gene regulation.


Subject(s)
Astacoidea/genetics , DNA Methylation , Genes, Essential , Animals , Chromatin Assembly and Disassembly , Genome
14.
Nat Commun ; 9(1): 577, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29422656

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer and usually progresses from a UV-induced precancerous lesion termed actinic keratosis (AK). Despite various efforts to characterize these lesions molecularly, the etiology of AK and its progression to cSCC remain partially understood. Here, we use Infinium MethylationEPIC BeadChips to interrogate the DNA methylation status in healthy, AK and cSCC epidermis samples. Importantly, we show that AK methylation patterns already display classical features of cancer methylomes and are highly similar to cSCC profiles. Further analysis identifies typical features of stem cell methylomes, such as reduced DNA methylation age, non-CpG methylation, and stem cell-related keratin and enhancer methylation patterns. Interestingly, this signature is detected only in half of the samples, while the other half shows patterns more closely related to healthy epidermis. These findings suggest the existence of two subclasses of AK and cSCC emerging from distinct keratinocyte differentiation stages.


Subject(s)
Carcinoma, Squamous Cell/genetics , DNA Methylation/genetics , Gene Expression Regulation, Neoplastic , Keratosis, Actinic/genetics , Skin Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cell Differentiation , Female , Humans , Keratinocytes , Male , Middle Aged , Young Adult
15.
Cell Stress ; 1(1): 55-67, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-31225434

ABSTRACT

Isocitrate dehydrogenases 1 and 2 (IDH1/2) are recurrently mutated in acute myeloid leukemia (AML), but their mechanistic role in leukemogenesis is poorly understood. The inhibition of TET enzymes by D-2-hydroxyglutarate (D-2-HG), which is produced by mutant IDH1/2 (mIDH1/2), has been suggested to promote epigenetic deregulation during tumorigenesis. In addition, mIDH also induces a differentiation block in various cell culture and mouse models. Here we analyze the genomic methylation patterns of AML patients with mIDH using Infinium 450K data from a large AML cohort and found that mIDH is associated with pronounced DNA hypermethylation at tens of thousands of CpGs. Interestingly, however, myeloid leukemia cells overexpressing mIDH, cells that were cultured in the presence of D-2-HG or TET2 mutant AML patients did not show similar methylation changes. In further analyses, we also characterized the methylation landscapes of myeloid progenitor cells and analyzed their relationship to mIDH-associated hypermethylation. Our findings identify the differentiation state of myeloid cells, rather than inhibition of TET-mediated DNA demethylation, as a major factor of mIDH-associated hypermethylation in AML. Furthermore, our results are also important for understanding the mode of action of currently developed mIDH inhibitors.

16.
Aging Cell ; 15(3): 563-71, 2016 06.
Article in English | MEDLINE | ID: mdl-27004597

ABSTRACT

Epigenetic changes represent an attractive mechanism for understanding the phenotypic changes associated with human aging. Age-related changes in DNA methylation at the genome scale have been termed 'epigenetic drift', but the defining features of this phenomenon remain to be established. Human epidermis represents an excellent model for understanding age-related epigenetic changes because of its substantial cell-type homogeneity and its well-known age-related phenotype. We have now generated and analyzed the currently largest set of human epidermis methylomes (N = 108) using array-based profiling of 450 000 methylation marks in various age groups. Data analysis confirmed that age-related methylation differences are locally restricted and characterized by relatively small effect sizes. Nevertheless, methylation data could be used to predict the chronological age of sample donors with high accuracy. We also identified discontinuous methylation changes as a novel feature of the aging methylome. Finally, our analysis uncovered an age-related erosion of DNA methylation patterns that is characterized by a reduced dynamic range and increased heterogeneity of global methylation patterns. These changes in methylation variability were accompanied by a reduced connectivity of transcriptional networks. Our findings thus define the loss of epigenetic regulatory fidelity as a key feature of the aging epigenome.


Subject(s)
DNA Methylation/genetics , Gene Regulatory Networks/genetics , Skin Aging/genetics , Transcription, Genetic , Adolescent , Adult , Aged , Epigenesis, Genetic , Humans , Middle Aged , Models, Biological , Young Adult
17.
Mol Cell Biol ; 36(3): 452-61, 2016 02 01.
Article in English | MEDLINE | ID: mdl-26598602

ABSTRACT

DNA methylation is a dynamic epigenetic modification with an important role in cell fate specification and reprogramming. The Ten eleven translocation (Tet) family of enzymes converts 5-methylcytosine to 5-hydroxymethylcytosine, which promotes passive DNA demethylation and functions as an intermediate in an active DNA demethylation process. Tet1/Tet2 double-knockout mice are characterized by developmental defects and epigenetic instability, suggesting a requirement for Tet-mediated DNA demethylation for the proper regulation of gene expression during differentiation. Here, we used whole-genome bisulfite and transcriptome sequencing to characterize the underlying mechanisms. Our results uncover the hypermethylation of DNA methylation canyons as the genomic key feature of Tet1/Tet2 double-knockout mouse embryonic fibroblasts. Canyon hypermethylation coincided with disturbed regulation of associated genes, suggesting a mechanistic explanation for the observed Tet-dependent differentiation defects. Based on these results, we propose an important regulatory role of Tet-dependent DNA demethylation for the maintenance of DNA methylation canyons, which prevents invasive DNA methylation and allows functional regulation of canyon-associated genes.


Subject(s)
DNA Methylation , DNA-Binding Proteins/genetics , Fibroblasts/cytology , Proto-Oncogene Proteins/genetics , Transcriptome , Adipogenesis , Animals , Cell Differentiation , Cells, Cultured , DNA-Binding Proteins/metabolism , Dioxygenases , Epigenesis, Genetic , Fibroblasts/metabolism , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , Proto-Oncogene Proteins/metabolism
18.
Cancer Res ; 75(10): 2120-30, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25808873

ABSTRACT

Chronic inflammation represents a major risk factor for tumor formation, but the underlying mechanisms have remained largely unknown. Epigenetic mechanisms can record the effects of environmental challenges on the genome level and could therefore play an important role in the pathogenesis of inflammation-associated tumors. Using single-base methylation maps and transcriptome analyses of a colitis-induced mouse colon cancer model, we identified a novel epigenetic program that is characterized by hypermethylation of DNA methylation valleys that are characterized by low CpG density and active chromatin marks. This program is conserved and functional in mouse intestinal adenomas and results in silencing of active intestinal genes that are involved in gastrointestinal homeostasis and injury response. Further analyses reveal that the program represents a prominent feature of human colorectal cancer and can be used to correctly classify colorectal cancer samples with high accuracy. Together, our results show that inflammatory signals establish a novel epigenetic program that silences a specific set of genes that contribute to inflammation-induced cellular transformation.


Subject(s)
Adenocarcinoma/genetics , Adenoma/genetics , Colitis/genetics , Colorectal Neoplasms/genetics , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Adenoma/immunology , Adenoma/metabolism , Animals , Colitis/metabolism , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , DNA Methylation , Epigenesis, Genetic , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Male , Mice, Inbred C57BL
19.
Nucleic Acids Res ; 42(19): e152, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25159616

ABSTRACT

Decitabine (5-aza-2'-deoxycytidine) is a DNA methyltransferase inhibitor and an archetypal epigenetic drug for the therapy of myeloid leukemias. The mode of action of decitabine strictly depends on the incorporation of the drug into DNA. However, DNA incorporation and ensuing genotoxic effects of decitabine have not yet been investigated in human cancer cell lines or in models related to the approved indication of the drug. Here we describe a robust assay for the quantitative determination of decitabine incorporation rates into DNA from human cancer cells. Using a panel of human myeloid leukemia cell lines we show appreciable amounts of decitabine incorporation that closely correlated with cellular drug uptake. Decitabine incorporation was also detectable in primary cells from myeloid leukemia patients, indicating that the assay is suitable for biomarker analyses to predict drug responses in patients. Finally, we also used next-generation sequencing to comprehensively analyze the effects of decitabine incorporation on the DNA sequence level. Interestingly, this approach failed to reveal significant changes in the rates of point mutations and genome rearrangements in myeloid leukemia cell lines. These results indicate that standard rates of decitabine incorporation are not genotoxic in myeloid leukemia cells.


Subject(s)
Antimetabolites, Antineoplastic/analysis , Azacitidine/analogs & derivatives , DNA, Neoplasm/chemistry , Mutation Rate , Azacitidine/analysis , Cell Line, Tumor , Decitabine , Humans , Scintillation Counting
20.
Dev Cell ; 29(1): 102-11, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24735881

ABSTRACT

Tet enzymes (Tet1/2/3) convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and are dynamically expressed during development. Whereas loss of individual Tet enzymes or combined deficiency of Tet1/2 allows for embryogenesis, the effect of complete loss of Tet activity and 5hmC marks in development is not established. We have generated Tet1/2/3 triple-knockout (TKO) mouse embryonic stem cells (ESCs) and examined their developmental potential. Combined deficiency of all three Tets depleted 5hmC and impaired ESC differentiation, as seen in poorly differentiated TKO embryoid bodies (EBs) and teratomas. Consistent with impaired differentiation, TKO ESCs contributed poorly to chimeric embryos, a defect rescued by Tet1 reexpression, and could not support embryonic development. Global gene-expression and methylome analyses of TKO EBs revealed promoter hypermethylation and deregulation of genes implicated in embryonic development and differentiation. These findings suggest a requirement for Tet- and 5hmC-mediated DNA demethylation in proper regulation of gene expression during ESC differentiation and development.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , Embryoid Bodies/cytology , Proto-Oncogene Proteins/metabolism , Animals , DNA Methylation , DNA-Binding Proteins/genetics , Dioxygenases , Embryoid Bodies/enzymology , Gene Deletion , Gene Expression Regulation, Developmental , Mice , Proto-Oncogene Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...