Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 128(9): 3674-3684, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38476828

ABSTRACT

The physical electrochemistry of the carbon/ionic liquids interface underpins the processes occurring in a vast range of applications spanning electrochemical energy storage, iontronic devices, and lubrication. Elucidating the charge storage mechanisms at the carbon/electrolyte interface will lead to a better understanding of the operational principles of such systems. Herein, we probe the charge stored at the electrochemical double layer formed between model carbon systems, ranging from single-layer graphene to graphite and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI). The effect of the number of graphene layers on the overall capacitance of the interface is investigated. We demonstrate that in pure EMIM-TFSI and at moderate potential biases, the electronic properties of graphene and graphite govern the overall capacitance of the interface, while the electrolyte contribution to the latter is less significant. In mixtures of EMIM-TFSI with solvents of varying relative permittivity, the complex interplay between electrolyte ions and solvent molecules is shown to influence the charge stored at the interface, which under certain conditions overcomes the effects of relative permittivity. This work provides additional experimental insights into the continuously advancing topic of electrochemical double-layer structure at the interface between room temperature ionic liquids and carbon materials.

2.
Nat Protoc ; 19(1): 240-280, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38012396

ABSTRACT

Fluidic channels at atomic scales regulate cellular trafficking and molecular filtration across membranes, and thus play crucial roles in the functioning of living systems. However, constructing synthetic channels experimentally at these scales has been a significant challenge due to the limitations in nanofabrication techniques and the surface roughness of the commonly used materials. Angstrom (Å)-scale slit-like channels overcome such challenges as these are made with precise control over their dimensions and can be used to study the fluidic properties of gases, ions and water at unprecedented scales. Here we provide a detailed fabrication method of the two-dimensional Å-scale channel devices that can be assembled to contain a desired number of channels, a single channel or up to hundreds of channels, made with atomic-scale precision using layered crystals. The procedure includes the fabrication of the substrate, flake, spacer layer, flake transfers, van der Waals assembly and postprocessing. We further explain how to perform molecular transport measurements with the Å-channels to directly probe the intriguing and anomalous phenomena that help shed light on the physics governing ultra-confined transport. The procedure requires a total of 1-2 weeks for the fabrication of the two-dimensional channel device and is suitable for users with prior experience in clean room working environments and nanofabrication.


Subject(s)
Filtration , Research Design , Feces , Water
3.
Nat Mater ; 22(10): 1236-1242, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37652991

ABSTRACT

Liquids confined down to the atomic scale can show radically new properties. However, only indirect and ensemble measurements operate in such extreme confinement, calling for novel optical approaches that enable direct imaging at the molecular level. Here we harness fluorescence originating from single-photon emitters at the surface of hexagonal boron nitride for molecular imaging and sensing in nanometrically confined liquids. The emission originates from the chemisorption of organic solvent molecules onto native surface defects, revealing single-molecule dynamics at the interface through the spatially correlated activation of neighbouring defects. Emitter spectra further offer a direct readout of the local dielectric properties, unveiling increasing dielectric order under nanometre-scale confinement. Liquid-activated native hexagonal boron nitride defects bridge the gap between solid-state nanophotonics and nanofluidics, opening new avenues for nanoscale sensing and optofluidics.

4.
Nat Nanotechnol ; 18(6): 596-601, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36997753

ABSTRACT

Ion-selective channels play a key role in physiological processes and are used in many technologies. Although biological channels can efficiently separate same-charge ions with similar hydration shells, it remains a challenge to mimic such exquisite selectivity using artificial solid-state channels. Although there are several nanoporous membranes that show high selectivity with respect to certain ions, the underlying mechanisms are based on the hydrated ion size and/or charge. There is a need to rationalize the design of artificial channels to make them capable of selecting between similar-sized same-charge ions, which, in turn, requires an understanding of why and how such selectivity can occur. Here we study ångström-scale artificial channels made by van der Waals assembly, which are comparable in size with typical ions and carry little residual charge on the channel walls. This allows us to exclude the first-order effects of steric- and Coulomb-based exclusion. We show that the studied two-dimensional ångström-scale capillaries can distinguish between same-charge ions with similar hydrated diameters. The selectivity is attributed to different positions occupied by ions within the layered structure of nanoconfined water, which depend on the ion-core size and differ for anions and cations. The revealed mechanism points at the possibilities of ion separation beyond simple steric sieving.


Subject(s)
Capillaries , Ion Channels , Ions , Cations
5.
J Am Chem Soc ; 145(14): 8007-8020, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36977204

ABSTRACT

The unique layered structure of graphite with its tunable interlayer distance establishes almost ideal conditions for the accommodation of ions into its structure. The smooth and chemically inert nature of the graphite surface also means that it is an ideal substrate for electrowetting. Here, we combine these two unique properties of this material by demonstrating the significant effect of anion intercalation on the electrowetting response of graphitic surfaces in contact with concentrated aqueous and organic electrolytes as well as ionic liquids. The structural changes during intercalation/deintercalation were probed using in situ Raman spectroscopy, and the results were used to provide insights into the influence of intercalation staging on the rate and reversibility of electrowetting. We show, by tuning the size of the intercalant and the stage of intercalation, that a fully reversible electrowetting response can be attained. The approach is extended to the development of biphasic (oil/water) systems that exhibit a fully reproducible electrowetting response with a near-zero voltage threshold and unprecedented contact angle variations of more than 120° within a potential window of less than 2 V.

6.
Nat Mater ; 21(6): 696-702, 2022 06.
Article in English | MEDLINE | ID: mdl-35422506

ABSTRACT

Carbon has emerged as a unique material in nanofluidics, with reports of fast water transport, molecular ion separation and efficient osmotic energy conversion. Many of these phenomena still await proper rationalization due to the lack of fundamental understanding of nanoscale ionic transport, which can only be achieved in controlled environments. Here we develop the fabrication of 'activated' two-dimensional carbon nanochannels. Compared with nanoconduits with 'pristine' graphite walls, this enables the investigation of nanoscale ionic transport in great detail. We show that activated carbon nanochannels outperform pristine channels by orders of magnitude in terms of surface electrification, ionic conductance, streaming current and (epi-)osmotic currents. A detailed theoretical framework enables us to attribute the enhanced ionic transport across activated carbon nanochannels to an optimal combination of high surface charge and low friction. Furthermore, this demonstrates the unique potential of activated carbon for energy harvesting from salinity gradients with single-pore power density across activated carbon nanochannels, reaching hundreds of kilowatts per square metre, surpassing alternative nanomaterials.


Subject(s)
Graphite , Nanostructures , Biological Transport , Charcoal , Ion Transport
7.
Nat Commun ; 12(1): 3092, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035239

ABSTRACT

Membrane-based applications such as osmotic power generation, desalination and molecular separation would benefit from decreasing water friction in nanoscale channels. However, mechanisms that allow fast water flows are not fully understood yet. Here we report angstrom-scale capillaries made from atomically flat crystals and study the effect of confining walls' material on water friction. A massive difference is observed between channels made from isostructural graphite and hexagonal boron nitride, which is attributed to different electrostatic and chemical interactions at the solid-liquid interface. Using precision microgravimetry and ion streaming measurements, we evaluate the slip length, a measure of water friction, and investigate its possible links with electrical conductivity, wettability, surface charge and polarity of the confining walls. We also show that water friction can be controlled using hybrid capillaries with different slip lengths at opposing walls. The reported advances extend nanofluidics' toolkit for designing smart membranes and mimicking manifold machinery of biological channels.

8.
Nanoscale ; 13(21): 9553-9560, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34018493

ABSTRACT

Nonspecific molecular adsorption such as airborne contamination occurs on most surfaces including those of 2D materials and alters their properties. While surface contamination is studied using a plethora of techniques, the effect of contamination on confined systems such as nanochannels/pores leading to their clogging is still lacking. We report a systematic investigation of hydrocarbon adsorption in angstrom (Å) slit channels of varying heights. Hexane is chosen to mimic the hydrocarbon contamination and the clogging of the Å-channels is evaluated via a helium gas flow measurement. The level of hexane adsorption, in other words, the degree of clogging depends on the size difference between the channels and hexane. A dynamic transition of the clogging and revival process is shown in sub-2 nm thin channels. Long-term storage and stability of our Å-channels are demonstrated here for up to three years, alleviating the contamination and unclogging the channels using thermal treatment. This study highlights the importance of the nanochannels' stability and demonstrates the self-cleansing nature of sub-2 nm thin channels enabling a robust platform for molecular transport and separation studies. We provide a method to assess the cleanliness of nanoporous membranes, which is vital for the practical applications of nanofluidics in various fields such as molecular sensing, separation and power generation.

9.
Adv Mater ; 33(11): e2007682, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33522015

ABSTRACT

2D nanoslit devices, where two crystals with atomically flat surfaces are separated by only a few nanometers, have attracted considerable attention because their tunable control over the confinement allows for the discovery of unusual transport behavior of gas, water, and ions. Here, the passage of double-stranded DNA molecules is studied through nanoslits fabricated from exfoliated 2D materials, such as graphene or hexagonal boron nitride, and the DNA polymer behavior is examined in this tight confinement. Two types of events are observed in the ionic current: long current blockades that signal DNA translocation and short spikes where DNA enters the slits but withdraws. DNA translocation events exhibit three distinct phases in their current-blockade traces-loading, translation, and exit. Coarse-grained molecular dynamics simulation allows the different polymer configurations of these phases to be identified. DNA molecules, including folds and knots in their polymer structure, are observed to slide through the slits with near-uniform velocity without noticeable frictional interactions of DNA with the confining graphene surfaces. It is anticipated that this new class of 2D-nanoslit devices will provide unique ways to study polymer physics and enable lab-on-a-chip biotechnology.


Subject(s)
DNA/chemistry , Nanopores , Graphite/chemistry , Molecular Conformation , Molecular Dynamics Simulation
10.
Sci Adv ; 6(51)2020 Dec.
Article in English | MEDLINE | ID: mdl-33355128

ABSTRACT

Gas flows are often analyzed with the theoretical descriptions formulated over a century ago and constantly challenged by the emerging architectures of narrow channels, slits, and apertures. Here, we report atomic-scale defects in two-dimensional (2D) materials as apertures for gas flows at the ultimate quasi-0D atomic limit. We establish that pristine monolayer tungsten disulfide (WS2) membranes act as atomically thin barriers to gas transport. Atomic vacancies from missing tungsten (W) sites are made in freestanding (WS2) monolayers by focused ion beam irradiation and characterized using aberration-corrected transmission electron microscopy. WS2 monolayers with atomic apertures are mechanically sturdy and showed fast helium flow. We propose a simple yet robust method for confirming the formation of atomic apertures over large areas using gas flows, an essential step for pursuing their prospective applications in various domains including molecular separation, single quantum emitters, sensing and monitoring of gases at ultralow concentrations.

11.
J Phys Chem Lett ; 10(3): 617-623, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30672302

ABSTRACT

Carbon materials are ubiquitous in energy storage; however, many of the fundamental electrochemical properties of carbons are still not fully understood. In this work, we studied the capacitance of highly ordered pyrolytic graphite (HOPG), with the aim of investigating specific ion effects seen in the capacitance of the basal plane and edge-oriented planes of the material. A series of alkali metal cations, from Li+, Na+, K+, Rb+, and Cs+ with chloride as the counterion, were used at a fixed electrolyte concentration. The basal plane capacitance at a fixed potential relative to the potential of zero charge was found to increase from 4.72 to 9.39 µF cm-2 proceeding down Group 1. In contrast, the edge-orientated samples display capacitance ca. 100 times higher than those of the basal plane, attributed to pseudocapacitance processes associated with the presence of oxygen groups and largely independent of cation identity. This work improves understanding of capacitive properties of carbonaceous materials, leading to their continued development for use in energy storage.

12.
J Am Chem Soc ; 139(46): 16454-16457, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29098859

ABSTRACT

Edge functionalization of bottom-up synthesized graphene nanoribbons (GNRs) with anthraquinone and naphthalene/perylene monoimide units has been achieved through a Suzuki coupling of polyphenylene precursors bearing bromo groups, prior to the intramolecular oxidative cyclo-dehydrogenation. High efficiency of the substitution has been validated by MALDI-TOF MS analysis of the functionalized precursors and FT-IR, Raman, and XPS analyses of the resulting GNRs. Moreover, AFM measurements demonstrated the modulation of the self-assembling behavior of the edge-functionalized GNRs, revealing that GNR-PMI formed an intriguing rectangular network. This result suggests the possibility of programming the supramolecular architecture of GNRs by tuning the functional units.

13.
Angew Chem Int Ed Engl ; 53(36): 9532-8, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25044776

ABSTRACT

Many nanoparticle adsorption processes are dictated by the collective interactions of surface-bound ligands. These adsorption processes define how nanoparticles interact with biological systems and enable the assembly of nanoparticle-based materials and devices. Herein, we present an approach for quantifying nanoparticle adsorption thermodynamics in a manner that satisfies the assumptions of the Langmuir model. Using this approach, we study the DNA-mediated adsorption of polyvalent anisotropic nanoparticles on surfaces and explore how deviations from model assumptions influence adsorption thermodynamics. Importantly, when combined with a solution-based van't Hoff analysis, we find that polyvalency plays a more important role as the individual interactions become weaker. Furthermore, we find that the free energy of anisotropic nanoparticle adsorption is consistent across multiple shapes and sizes of nanoparticles based on the surface area of the interacting facet.


Subject(s)
DNA/chemistry , Nanoparticles/chemistry , Adsorption , Algorithms , Anisotropy , Ligands , Models, Chemical , Nucleic Acid Hybridization , Particle Size , Thermodynamics
14.
Nano Lett ; 14(4): 2162-7, 2014.
Article in English | MEDLINE | ID: mdl-24641553

ABSTRACT

Colloidal self-assembly predominantly results in lattices that are either: (1) fixed in the solid state and not amenable to additional modification, or (2) in solution, capable of dynamic adjustment, but difficult to transition to other environments. Accordingly, approaches to both dynamically adjust the interparticle spacing of nanoparticle superlattices and reversibly transfer superlattices between solution-phase and solid state environments are limited. In this manuscript, we report the reversible contraction and expansion of nanoparticles within immobilized monolayers, surface-assembled superlattices, and free-standing single crystal superlattices through dehydration and subsequent rehydration. Interestingly, DNA contraction upon dehydration occurs in a highly uniform manner, which allows access to spacings as small as 4.6 nm and as much as a 63% contraction in the volume of the lattice. This enables one to deliberately control interparticle spacings over a 4-46 nm range and to preserve solution-phase lattice symmetry in the solid state. This approach could be of use in the study of distance-dependent properties of nanoparticle superlattices and for long-term superlattice preservation.

15.
Nat Protoc ; 8(12): 2548-60, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24263094

ABSTRACT

The challenge of constructing surfaces with nanostructured chemical functionality is central to many areas of biology and biotechnology. This protocol describes the steps required for performing molecular printing using polymer pen lithography (PPL), a cantilever-free scanning probe-based technique that can generate sub-100-nm molecular features in a massively parallel fashion. To illustrate how such molecular printing can be used for a variety of biologically relevant applications, we detail the fabrication of the lithographic apparatus and the deposition of two materials, an alkanethiol and a polymer onto a gold and silicon surface, respectively, and show how the present approach can be used to generate nanostructures composed of proteins and metals. Finally, we describe how PPL enables researchers to easily create combinatorial arrays of nanostructures, a powerful approach for high-throughput screening. A typical protocol for fabricating PPL arrays and printing with the arrays takes 48-72 h to complete, including two overnight waiting steps.


Subject(s)
Bioengineering/methods , Nanotechnology/methods , Polymers/chemistry , Fibronectins/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Silicon/chemistry , Surface Properties
16.
ACS Appl Mater Interfaces ; 5(15): 7274-81, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23819468

ABSTRACT

Flexible palladium-based H2 sensors have a great potential in advanced sensing applications, as they offer advantages such as light weight, space conservation, and mechanical durability. Despite these advantages, the paucity of such sensors is due to the fact that they are difficult to fabricate while maintaining excellent sensing performance. Here, we demonstrate, using direct nanoimprint lithography of palladium, the fabrication of a flexible, durable, and fast responsive H2 sensor that is capable of detecting H2 gas concentration as low as 50 ppm. High resolution and high throughput patterning of palladium gratings over a 2 cm × 1 cm area on a rigid substrate was achieved by heat-treating nanoimprinted palladium benzyl mercaptide at 250 °C for 1 h. The flexible and robust H2 sensing device was fabricated by subsequent transfer nanoimprinting of these gratings into a polycarbonate film at its glass transition temperature. This technique produces flexible H2 sensors with improved durability, sensitivity, and response time in comparison to palladium thin films. At ambient pressure and temperature, the device showed a fast response time of 18 s at a H2 concentration of 3500 ppm. At 50 ppm concentration, the response time was found to be 57 s. The flexibility of the sensor does not appear to compromise its performance.

17.
Proc Natl Acad Sci U S A ; 110(32): 12921-4, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23861495

ABSTRACT

Scanning probe lithography (SPL) is a promising candidate approach for desktop nanofabrication, but trade-offs in throughput, cost, and resolution have limited its application. The recent development of cantilever-free scanning probe arrays has allowed researchers to define nanoscale patterns in a low-cost and high-resolution format, but with the limitation that these are duplication tools where each probe in the array creates a copy of a single pattern. Here, we report a cantilever-free SPL architecture that can generate 100 nanometer-scale molecular features using a 2D array of independently actuated probes. To physically actuate a probe, local heating is used to thermally expand the elastomeric film beneath a single probe, bringing it into contact with the patterning surface. Not only is this architecture simple and scalable, but it addresses fundamental limitations of 2D SPL by allowing one to compensate for unavoidable imperfections in the system. This cantilever-free dot-matrix nanoprinting will enable the construction of surfaces with chemical functionality that is tuned across the nano- and macroscales.


Subject(s)
Nanoparticles/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Polymers/chemistry , Algorithms , Elastomers , Kinetics , Microscopy, Electron, Scanning , Models, Chemical , Nanoparticles/ultrastructure , Nanostructures/ultrastructure , Nanotechnology/instrumentation , Reproducibility of Results , Surface Properties , Thermodynamics
18.
Sci Rep ; 3: 1078, 2013.
Article in English | MEDLINE | ID: mdl-23446801

ABSTRACT

Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles.

19.
ACS Nano ; 7(3): 2602-9, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23402390

ABSTRACT

Palladium alkanethiolates are introduced here as a novel liquid ink for dip-pen nanolithography (DPN). These structures exhibit the unusual characteristic of layer-by-layer assembly, allowing one to deposit a desired number of metal ions on a surface, which can subsequently be reduced via thermolysis to form active catalytic structures. Such structures have been used to generate contiguous metallic or conducting polymer nanoscale architectures by electroless deposition.

20.
Small ; 6(17): 1935-41, 2010 Sep 06.
Article in English | MEDLINE | ID: mdl-20662001

ABSTRACT

During the growth of InAs nanowires from Pd catalyst particles on InAs(111)A substrates, two distinct classes of nanowires are observed with smooth or zigzagged sidewalls. It is shown that this is related to a bimodal distribution of the wire-tip diameter: above a critical diameter wires grow with smooth sidewalls, and below with zigzagged morphology. Transmission electron microscopy analysis shows that the catalyst particles at the tip of zigzagged wires are smooth and have a higher aspect ratio than those at the tip of smooth wires. Zigzagged wires grow from liquid particles in the vapor-liquid-solid (VLS) mode whereas the smooth ones grow from solid particles in the vapor-solid-solid (VSS) mode.


Subject(s)
Arsenicals/chemistry , Indium/chemistry , Nanotechnology/methods , Nanowires/chemistry , Palladium/chemistry , Catalysis , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...