Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antiviral Res ; 208: 105449, 2022 12.
Article in English | MEDLINE | ID: mdl-36265804

ABSTRACT

Influenza virus causes severe respiratory infection in humans. Current antivirotics target three key proteins in the viral life cycle: neuraminidase, the M2 channel and the endonuclease domain of RNA-dependent-RNA polymerase. Due to the development of novel pandemic strains, additional antiviral drugs targetting different viral proteins are still needed. The protein-protein interaction between polymerase subunits PA and PB1 is one such possible target. We recently identified a modified decapeptide derived from the N-terminus of the PB1 subunit with high affinity for the C-terminal part of the PA subunit. Here, we optimized its amino acid hotspots to maintain the inhibitory potency and greatly increase peptide solubility. This allowed thermodynamic characterization of peptide binding to PA. Solving the X-ray structure of the peptide-PA complex provided structural insights into the interaction. Additionally, we optimized intracellular delivery of the peptide using a bicyclic strategy that led to improved inhibition in cell-based assays.


Subject(s)
Influenza, Human , Humans , Influenza, Human/drug therapy , Protein Binding , RNA-Dependent RNA Polymerase , Peptides/pharmacology , Peptides/metabolism , Thermodynamics
2.
Int J Mol Sci ; 22(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299354

ABSTRACT

The part of the influenza polymerase PA subunit featuring endonuclease activity is a target for anti-influenza therapies, including the FDA-approved drug Xofluza. A general feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions located in the enzyme's catalytic site. Previously, we screened a panel of flavonoids for PA inhibition and found luteolin and its C-glucoside orientin to be potent inhibitors. Through structural analysis, we identified the presence of a 3',4'-dihydroxyphenyl moiety as a crucial feature for sub-micromolar inhibitory activity. Here, we report results from a subsequent investigation exploring structural changes at the C-7 and C-8 positions of luteolin. Experimental IC50 values were determined by AlphaScreen technology. The most potent inhibitors were C-8 derivatives with inhibitory potencies comparable to that of luteolin. Bio-isosteric replacement of the C-7 hydroxyl moiety of luteolin led to a series of compounds with one-order-of-magnitude-lower inhibitory potencies. Using X-ray crystallography, we solved structures of the wild-type PA-N-terminal domain and its I38T mutant in complex with orientin at 1.9 Å and 2.2 Å resolution, respectively.


Subject(s)
Endonucleases/antagonists & inhibitors , Luteolin/chemical synthesis , Luteolin/pharmacology , Orthomyxoviridae/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Catalytic Domain/drug effects , Viral Proteins/antagonists & inhibitors
3.
Molecules ; 26(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33673017

ABSTRACT

Influenza A virus (IAV) encodes a polymerase composed of three subunits: PA, with endonuclease activity, PB1 with polymerase activity and PB2 with host RNA five-prime cap binding site. Their cooperation and stepwise activation include a process called cap-snatching, which is a crucial step in the IAV life cycle. Reproduction of IAV can be blocked by disrupting the interaction between the PB2 domain and the five-prime cap. An inhibitor of this interaction called pimodivir (VX-787) recently entered the third phase of clinical trial; however, several mutations in PB2 that cause resistance to pimodivir were observed. First major mutation, F404Y, causing resistance was identified during preclinical testing, next the mutation M431I was identified in patients during the second phase of clinical trials. The mutation H357N was identified during testing of IAV strains at Centers for Disease Control and Prevention. We set out to provide a structural and thermodynamic analysis of the interactions between cap-binding domain of PB2 wild-type and PB2 variants bearing these mutations and pimodivir. Here we present four crystal structures of PB2-WT, PB2-F404Y, PB2-M431I and PB2-H357N in complex with pimodivir. We have thermodynamically analysed all PB2 variants and proposed the effect of these mutations on thermodynamic parameters of these interactions and pimodivir resistance development. These data will contribute to understanding the effect of these missense mutations to the resistance development and help to design next generation inhibitors.


Subject(s)
Drug Resistance, Viral/drug effects , Influenza A virus/enzymology , Protein Subunits/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/antagonists & inhibitors , Crystallography, X-Ray , Influenza A virus/drug effects , Models, Molecular , Mutant Proteins/metabolism , Mutation/genetics , Protein Domains , Protein Subunits/chemistry , Protein Subunits/metabolism , Quantum Theory , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , Thermodynamics , Viral Proteins/chemistry , Viral Proteins/metabolism
4.
Antiviral Res ; 185: 104971, 2021 01.
Article in English | MEDLINE | ID: mdl-33166574

ABSTRACT

Influenza viruses can cause severe respiratory infections in humans, leading to nearly half a million deaths worldwide each year. Improved antiviral drugs are needed to address the threat of development of novel pandemic strains. Current therapeutic interventions target three key proteins in the viral life cycle: neuraminidase, the M2 channel and RNA-dependent-RNA polymerase. Protein-protein interactions between influenza polymerase subunits are potential new targets for drug development. Using a newly developed assay based on AlphaScreen technology, we screened a peptide panel for protein-protein interaction inhibitors to identify a minimal PB1 subunit-derived peptide that retains high inhibition potential and can be further modified. Here, we present an X-ray structure of the resulting decapeptide bound to the C-terminal domain of PA polymerase subunit from pandemic isolate A/California/07/2009 H1N1 at 1.6 Å resolution and discuss its implications for the design of specific, potent influenza polymerase inhibitors.


Subject(s)
Influenza A Virus, H1N1 Subtype/enzymology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Antiviral Agents/pharmacology , Crystallization , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/metabolism , Protein Binding , Protein Interaction Domains and Motifs/drug effects , Protein Interaction Domains and Motifs/physiology , Viral Proteins/antagonists & inhibitors
5.
Eur J Med Chem ; 208: 112754, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32883638

ABSTRACT

The biological effects of flavonoids on mammal cells are diverse, ranging from scavenging free radicals and anti-cancer activity to anti-influenza activity. Despite appreciable effort to understand the anti-influenza activity of flavonoids, there is no clear consensus about their precise mode-of-action at a cellular level. Here, we report the development and validation of a screening assay based on AlphaScreen technology and illustrate its application for determination of the inhibitory potency of a large set of polyols against PA N-terminal domain (PA-Nter) of influenza RNA-dependent RNA polymerase featuring endonuclease activity. The most potent inhibitors we identified were luteolin with an IC50 of 72 ± 2 nM and its 8-C-glucoside orientin with an IC50 of 43 ± 2 nM. Submicromolar inhibitors were also evaluated by an in vitro endonuclease activity assay using single-stranded DNA, and the results were in full agreement with data from the competitive AlphaScreen assay. Using X-ray crystallography, we analyzed structures of the PA-Nter in complex with luteolin at 2.0 Å resolution and quambalarine B at 2.5 Å resolution, which clearly revealed the binding pose of these polyols coordinated to two manganese ions in the endonuclease active site. Using two distinct assays along with the structural work, we have presumably identified and characterized the molecular mode-of-action of flavonoids in influenza-infected cells.


Subject(s)
Antiviral Agents/chemistry , Endonucleases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Flavonoids/chemistry , Influenza A virus/enzymology , Viral Proteins/antagonists & inhibitors , Antiviral Agents/metabolism , Crystallography, X-Ray , Drug Evaluation, Preclinical , Endonucleases/chemistry , Endonucleases/metabolism , Enzyme Assays/methods , Enzyme Inhibitors/metabolism , Flavonoids/metabolism , Microbial Sensitivity Tests , Molecular Structure , Protein Binding , Protein Domains , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Structure-Activity Relationship , Viral Proteins/chemistry , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...