Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 13(5): e0144022, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36005392

ABSTRACT

The fungus Rhizopus microsporus harbors a bacterial endosymbiont (Mycetohabitans rhizoxinica) for the production of the antimitotic toxin rhizoxin. Although rhizoxin is the causative agent of rice seedling blight, the toxinogenic bacterial-fungal alliance is, not restricted to the plant disease. It has been detected in numerous environmental isolates from geographically distinct sites covering all five continents, thus raising questions regarding the ecological role of rhizoxin beyond rice seedling blight. Here, we show that rhizoxin serves the fungal host in fending off protozoan and metazoan predators. Fluorescence microscopy and coculture experiments with the fungivorous amoeba Protostelium aurantium revealed that ingestion of R. microsporus spores is toxic to P. aurantium. This amoebicidal effect is caused by the dominant bacterial rhizoxin congener rhizoxin S2, which is also lethal toward the model nematode Caenorhabditis elegans. By combining stereomicroscopy, automated image analysis, and quantification of nematode movement, we show that the fungivorous nematode Aphelenchus avenae actively feeds on R. microsporus that is lacking endosymbionts, whereas worms coincubated with symbiotic R. microsporus are significantly less lively. This study uncovers an unexpected ecological role of rhizoxin as shield against micropredators. This finding suggests that predators may function as an evolutionary driving force to maintain toxin-producing endosymbionts in nonpathogenic fungi. IMPORTANCE The soil community is a complex system characterized by predator-prey interactions. Fungi have developed effective strategies to defend themselves against predators. Understanding these strategies is of critical importance for ecology, medicine, and biotechnology. In this study, we shed light on the defense mechanisms of the phytopathogenic Rhizopus-Mycetohabitans symbiosis that has spread worldwide. We report an unexpected role of rhizoxin, a secondary metabolite produced by the bacterium M. rhizoxinica residing within the hyphae of R. microsporus. We show that this bacterial secondary metabolite is utilized by the fungal host to successfully fend off fungivorous protozoan and metazoan predators and thus identified a fundamentally new function of this infamous cytotoxic compound. This endosymbiont-dependent predator defense illustrates an unusual strategy employed by fungi that has broader implications, since it may serve as a model for understanding how animal predation acts as an evolutionary driving force to maintain endosymbionts in nonpathogenic fungi.


Subject(s)
Antimitotic Agents , Burkholderia , Oryza , Toxins, Biological , Animals , Burkholderia/metabolism , Antimitotic Agents/metabolism , Macrolides , Symbiosis , Oryza/microbiology , Seedlings , Soil
2.
Cell Microbiol ; 23(11): e13389, 2021 11.
Article in English | MEDLINE | ID: mdl-34460149

ABSTRACT

Predatory interactions among microbes are major evolutionary driving forces for biodiversity. The fungivorous amoeba Protostelium aurantium has a wide fungal food spectrum including foremost pathogenic members of the genus Candida. Here we show that upon phagocytic ingestion by the amoeba, Candida parapsilosis is confronted with an oxidative burst and undergoes lysis within minutes of processing in acidified phagolysosomes. On the fungal side, a functional genomic approach identified copper and redox homeostasis as primary targets of amoeba predation, with the highly expressed copper exporter gene CRP1 and the peroxiredoxin gene PRX1 contributing to survival when encountered with P. aurantium. The fungicidal activity was largely retained in intracellular vesicles of the amoebae. Following their isolation, the content of these vesicles induced immediate killing and lysis of C. parapsilosis in vitro. Proteomic analysis identified 56 vesicular proteins from P. aurantium. Although completely unknown proteins were dominant, many of them could be categorised as hydrolytic enzymes targeting the fungal cell wall, indicating that fungal cell wall structures are under selection pressure by predatory phagocytes in natural environments. TAKE AWAY: The amoeba Protostelium aurantium feeds on fungi, such as Candida parapsilosis. Ingested yeast cells are exposed to reactive oxygen species. A copper exporter and a peroxiredoxin contribute to fungal defence. Yeast cells undergo intracellular lysis. Lysis occurs via a cocktail of hydrolytic enzymes from intracellular vesicles.


Subject(s)
Amoeba , Candida parapsilosis , Cell Wall , Homeostasis , Homicide , Oxidation-Reduction , Proteomics
3.
Curr Opin Microbiol ; 62: 38-44, 2021 08.
Article in English | MEDLINE | ID: mdl-34051610

ABSTRACT

Free living amoebae share striking similarities with innate immune cells in terms of cell morphology, motility and phagocytic processing of microbes. Their abilities to find, ingest and kill bacteria and fungi in their natural habitats have fostered the hypothesis that amoebae could have served as a training ground for environmentally acquired pathogens. What may have been more obvious for intracellular bacteria, becomes increasingly clear also for several fungal pathogens: a number of virulence determinants of human pathogenic fungi such as Cryptococcus neoformans or Aspergillus fumigatus are equally relevant to resist innate immune cells and environmental phagocytic predators. Here, we summarize the most recent experimental examples underlining the concept of amoeba models to study fungal pathogens.


Subject(s)
Amoeba , Cryptococcus neoformans , Animals , Fungi , Host-Pathogen Interactions , Humans , Phagocytes , Phagocytosis , Predatory Behavior
4.
Environ Microbiol ; 21(5): 1809-1820, 2019 05.
Article in English | MEDLINE | ID: mdl-30868709

ABSTRACT

Size and diverse morphologies pose a primary challenge for phagocytes such as innate immune cells and predatory amoebae when encountering fungal prey. Although filamentous fungi can escape phagocytic killing by pure physical constraints, unicellular spores and yeasts can mask molecular surface patterns or arrest phagocytic processing. Here, we show that the fungivorous amoeba Protostelium aurantium was able to adjust its killing and feeding mechanisms to these different cell shapes. Yeast-like fungi from the major fungal groups of basidiomycetes and ascomycetes were readily internalized by phagocytosis, except for the human pathogen Candida albicans whose mannoprotein coat was essential to escape recognition by the amoeba. Dormant spores of the filamentous fungus Aspergillus fumigatus also remained unrecognized, but swelling and the onset of germination induced internalization and intracellular killing by the amoeba. Mature hyphae of A. fumigatus were mostly attacked from the hyphal tip and killed by an actin-mediated invasion of fungal filaments. Our results demonstrate that predatory pressure imposed by amoebae in natural environments selects for distinct survival strategies in yeast and filamentous fungi but commonly targets the fungal cell wall as a crucial molecular pattern associated to prey and pathogens.


Subject(s)
Amoeba/microbiology , Fungi/physiology , Yeasts/physiology , Amoeba/physiology , Cell Wall , Fungi/genetics , Fungi/growth & development , Fungi/isolation & purification , Hyphae/genetics , Hyphae/growth & development , Phagocytosis , Yeasts/genetics , Yeasts/growth & development , Yeasts/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...