Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
PLoS One ; 18(12): e0287278, 2023.
Article in English | MEDLINE | ID: mdl-38051715

ABSTRACT

Ryegrass mottle virus (RGMoV; genus: Sobemovirus) is a single-stranded positive RNA virus with a 30 nm viral particle size. It exhibits T = 3 symmetry with 180 coat protein (CP) subunits forming a viral structure. The RGMoV genome comprises five open reading frames that encode P1, Px, a membrane-anchored 3C-like serine protease, a viral genome-linked protein, P16, an RNA-dependent RNA polymerase, and CP. The RGMoV genome size varies, ranging from 4175 nt (MW411579.1) to 4253 nt (MW411579.1) in the deposited sequences. An earlier deposited RGMoV complete genome sequence of 4212 nt length (EF091714.1) was used to develop an infectious complementary DNA (icDNA) construct for in vitro gRNA transcription from the T7 promoter. However, viral infection was not induced when the transcribed gRNA was introduced into oat plants, indicating the potential absence of certain sequences in either the 5' or 3' untranslated regions (UTR) or both. The complete sequence of the 3' UTR was determined through 3' end RACE, while the 5' UTR was identified using high-throughput sequencing (HTS)-RNA-Seq to resolve the potential absences. Only the icDNA vector containing the newly identified UTR sequences proved infectious, resulting in typical viral infection symptoms and subsequent propagation of progeny viruses, exhibiting the ability to cause repeated infections in oat plants after at least one passage. The successful generation of icDNA highlighted the synergistic potential of utilizing both methods when a single approach failed. Furthermore, this study demonstrated the reliability of HTS as a method for determining the complete genome sequence of viral genomes.


Subject(s)
Lolium , RNA Viruses , Viruses , DNA, Complementary/genetics , Lolium/genetics , RNA-Seq , Reproducibility of Results , RNA, Guide, CRISPR-Cas Systems , RNA Viruses/genetics , Genome, Viral , Viruses/genetics , RNA, Viral/genetics , Open Reading Frames/genetics
2.
Cancers (Basel) ; 15(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686605

ABSTRACT

Over the past decade, extracellular vesicles (EVs) have emerged as a promising source of cancer-derived RNAs for liquid biopsies. However, blood contains a pool of heterogeneous EVs released by a variety of cell types, making the identification of cancer RNA biomarkers challenging. Here, we performed deep sequencing of plasma EV RNA cargo in 32 patients with locally advanced breast cancer (BC) at diagnosis and 7 days after breast surgery and in 30 cancer-free healthy controls (HCs). To identify BC-derived RNA biomarkers, we searched for RNAs that had higher levels in BC EVs at the time of diagnosis compared with HCs and decreased after surgery. Data analysis showed that the fractions of miRNAs, snRNAs, snoRNAs, and tRFs were increased, but the fraction of lncRNAs was decreased in BC EVs as compared to HCs. BC-derived biomarker candidates were identified across various RNA biotypes. Considered individually, they had very high specificity but moderate sensitivity for the detection of BC, whereas a biomarker model composed of eight RNAs: SNORD3H, SNORD1C, SNORA74D, miR-224-5p, piR-32949, lnc-IFT-122-2, lnc-C9orf50-4, and lnc-FAM122C-3 was able to distinguish BC from HC EVs with an AUC of 0.902 (95% CI = 0.872-0.931, p = 3.4 × 10-9) in leave-one-out cross-validation. Furthermore, a number of RNA biomarkers were correlated with the ER and HER2 expression and additional biomarker models were created to predict hormone receptor and HER2 status. Overall, this study demonstrated that the RNA composition of plasma EVs is altered in BC patients and that they contain cancer-derived RNA biomarkers that can be used for BC detection and monitoring using liquid biopsies.

3.
Front Mol Biosci ; 10: 980433, 2023.
Article in English | MEDLINE | ID: mdl-36818049

ABSTRACT

Introduction: Extracellular vesicles (EVs) have emerged as a very attractive source of cancer- derived RNA biomarkers for the early detection, prognosis and monitoring of various cancers, including prostate cancer (PC). However, biofluids contain a mixture of EVs released from a variety of tissues and the fraction of total EVs that are derived from PC tissue is not known. Moreover, the optimal biofluid-plasma or urine-that is more suitable for the detection of EV- enclosed RNA biomarkers is not yet clear. Methodology: In the current study, we performed RNA sequencing analysis of plasma and urinary EVs collected before and after radical prostatectomy, and matched tumor and normal prostate tissues of 10 patients with prostate cancer. Results and Discussion: The most abundant RNA biotypes in EVs were miRNA, piRNA, tRNA, lncRNA, rRNA and mRNA. To identify putative cancer-derived RNA biomarkers, we searched for RNAs that were overexpressed in tumor as compared to normal tissues, present in the pre-operation EVs and decreased in the post-operation EVs in each RNA biotype. The levels of 63 mRNAs, 3 lncRNAs, 2 miRNAs and 1 piRNA were significantly increased in the tumors and decreased in the post-operation urinary EVs, thus suggesting that these RNAs mainly originate from PC tissue. No such RNA biomarkers were identified in plasma EVs. This suggests that the fraction of PC-derived EVs in urine is larger than in plasma and allows the detection and tracking of PC-derived RNAs.

4.
Neurol Genet ; 8(3): e685, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36381256

ABSTRACT

Background and Objectives: Genetic testing has become an integral part of health care, allowing the confirmation of thousands of hereditary diseases, including neuromuscular disorders (NMDs). The reported average prevalence of individual inherited NMDs is 3.7-4.99 per 10,000. This number varies greatly in the selected populations after applying population-wide studies. The aim of this study was to evaluate the effect of genetic analysis as the first-tier test in patients with NMD and to calculate the disease prevalence and allelic frequencies for reoccurring genetic variants. Methods: Patients with NMD from Latvia with molecular tests confirming their diagnosis in 2008-2020 were included in this retrospective study. Results: Diagnosis was confirmed in 153 unique cases of all persons tested. Next-generation sequencing resulted in a detection rate of 37%. Two of the most common childhood-onset NMDs in our population were spinal muscular atrophy and dystrophinopathies, with a birth prevalence of 1.01 per 10,000 newborns and 2.08 per 10,000 (male newborn population), respectively. The calculated point prevalence was 0.079 per 10,000 for facioscapulohumeral muscular dystrophy type 1, 0.078 per 10,000 for limb-girdle muscular dystrophy, 0.073 per 10,000 for nondystrophic congenital myotonia, 0.052 per 10,000 for spinobulbar muscular atrophy, and 0.047 per 10,000 for type 1 myotonic dystrophy. Discussion: DNA diagnostics is a successful approach. The carrier frequencies of the common CAPN3, FKRP, SPG11, and HINT1 gene variants as well as that of the SMN1 gene exon 7 deletion in the population of Latvia are comparable with data from Europe. The carrier frequency of the CLCN1 gene variant c.2680C>T p.(Arg894Ter) is 2.11%, and consequently, congenital myotonia is the most frequent NMD in our population.

5.
Front Oncol ; 12: 1005812, 2022.
Article in English | MEDLINE | ID: mdl-36387168

ABSTRACT

Extracellular vesicles (EVs) are g7aining increased attention as carriers of cancer-derived molecules for liquid biopsies. Here, we studied the dynamics of EV levels in the plasma of breast cancer (BC) patients undergoing neoadjuvant chemotherapy (NAC) and explored the relevance of their RNA cargo for the prediction of patients' response to the therapy. EVs were isolated from serial blood samples collected at the time of diagnosis, at the end of NAC, and 7 days, 6, and 12 months after the surgery from 32 patients with locally advanced BC, and 30 cancer-free healthy controls (HCs) and quantified by nanoparticle tracking analysis. The pre-treatment levels of EVs in BC patients were higher than in HCs, significantly increased during the NAC and surgery, and decreased to the levels found in HCs 6 months after surgery, thus showing that a substantial fraction of plasma EVs in BC patients are produced due to the disease processes and treatment. RNA sequencing analysis revealed that the changes in the EV levels were associated with the alterations in the proportions of various RNA biotypes in EVs. To search for RNA biomarkers that predict response to the NAC, patients were dichotomized as responders and non-responders based on Miller-Payne grades and differential expression analyses were carried out between responders and non-responders, and HCs. This resulted in the identification of 6 miRNAs, 4 lncRNAs, and 1 snoRNA that had significantly higher levels in EVs from non-responders than responders at the time of diagnosis and throughout the NAC, and significantly lower levels in HCs, thus representing biomarkers for the prediction of response to NAC at the time of diagnosis. In addition, we found 14 RNAs representing piRNA, miRNA, lncRNA, snoRNA, and snRNA biotypes that were induced by NAC in non-responders and 2 snoRNAs and 1 piRNA that were induced by NAC in patients with early disease progression, thus warranting further functional studies on their role in chemoresistance and metastasis.

6.
Mol Genet Metab Rep ; 29: 100796, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34584847

ABSTRACT

Hereditary ectodermal dysplasias are a complex group of inherited disorders characterised by abnormalities in two or more ectodermal derivatives (skin, nails, sweat glands, etc.). There are two main types of these disorders - hidrotic and hypohidrotic/anhidrotic ectodermal dysplasias. Hypohidrotic ectodermal dysplasia (HED) or Christ-Siemens-Touraine syndrome (OMIM: 305100) occurs in 1 out of 5000-10,000 births [19] and has an X-linked recessive inheritance pattern (X-linked hypohydrotic ectodermal dysplasia - XLHED) [2]. The main cause of XLHED is a broad range of pathogenic variants in the EDA gene (HGNC:3157, Xq12-13) which encodes the transmembrane protein ectodysplasin-A [4]. We report here the case of a patient with a novel inherited allelic variant in the EDA gene - NM_001399.5:c.337C>T (p.Gln113*) - in the heterozygous state. Targeted family member screening was conducted and other carriers of this EDA gene pathogenic variant were identified and phenotypically characterised. The patient subsequently underwent in vitro fertilisation with preimplantation genetic testing for monogenic diseases (PGT-M).

7.
Helicobacter ; 25(5): e12748, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32776403

ABSTRACT

BACKGROUND: According to recent estimates 80% of Latvian population is infected with Helicobacter pylori thus their susceptibility to numerous gastric tract diseases is increased. The 1st line H. pylori eradication therapy includes treatment with clarithromycin in combination with amoxicillin or metronidazole and a proton pump inhibitor. However, potential adverse events caused by such therapies to microbiome are insufficiently studied. OBJECTIVE: This study aimed to evaluate the long-term effect of H. pylori eradication on human gastrointestinal tract (GIT) microbiome. METHODS: The assessment of H pylori eradication impact on GIT microbiome was done by analyzing 120 samples acquired from 60 subjects. Each individual was prescribed the following 10-day eradication regimen: Esomeprazolum 40 mg, Clarithromycinum 500 mg, and Amoxicillinum 1000 mg, BID. Samples from each individual were collected before starting H pylori eradication therapy, and 2 years after the completion of the therapy in OC-Sensor (Eiken Chemical Co.) sample collection containers and stored at -86°C. Prior to DNA extraction, the samples were lyophilized, and total DNA was extracted using FastDNA Spin Kit for Soil. 16S V3 rRNA gene sequencing was done employing Ion Torrent PGM, and the obtained raw sequences were analyzed using vsearch and R (phyloseq, cluster packages). RESULTS: Alpha diversity measurements-observed OTUs, Chao1 and Shannon index did not differ significantly between the pre- and post-eradication states (two-tailed paired t test: P = .95; P = .71, P = .24, respectively). Unweighted and weighted UniFrac distances of beta diversity analysis indicated a non-specific pattern of sample clustering. Enterotype shift was observed for the majority of individuals comparing pre- and post-eradication study groups. Association analysis revealed that certain bacterial genera significantly correlated with age (eg, Dialister, Paraprevotella, Bifidobacterium), individual (eg, Thermotunica, Streptomyces, Faecalibacterium), and history of respiratory and/or allergic diseases (eg, Colinsella, Faecalibacterium). Redundancy analysis confirmed that the individual was a significant determinant of the subject's microbial community composition (ANOVA, 999 perm., P = .001) with the further lower impact of subject-specific medical history (eg, medication used as prescribed: P = .005, history of cardiovascular diseases: P = .005, history of respiratory, and/or allergic diseases: P = .015) and physiological (eg, age: P = .005, gender: P = .02) parameters. In the post-eradication study group, number of influential genera (n = 260) was increased compared to the pre-eradication study group (n = 209). CONCLUSION: Modest global differences at the community level exist between individuals before and after the eradication therapy; however, the microbiome structure is more related to the subject-specific parameters rather than by the eradication therapy itself.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Gastrointestinal Microbiome/drug effects , Helicobacter Infections/drug therapy , Proton Pump Inhibitors/therapeutic use , Adult , Amoxicillin/therapeutic use , Clarithromycin/therapeutic use , Drug Therapy, Combination , Female , Humans , Latvia/epidemiology , Male , Metronidazole/therapeutic use , Middle Aged
8.
BMC Endocr Disord ; 20(1): 17, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31996211

ABSTRACT

BACKGROUND: Pituitary adenomas (PA) have an increased potential for relapse in one to 5 years after resection. In this study, we investigated the genetic differences in genomic DNA of primary and rapidly recurrent tumours in the same patient to explain the causality mechanisms of PA recurrence. CASE PRESENTATION: The patient was a 69-year-old female with non-functional pituitary macroadenoma with extension into the left cavernous sinus (Knosp grade 2) who underwent craniotomy and partial resection in August 2010. Two years later, the patient had prolonged tumour growth with an essential suprasellar extension (Knosp grade 2), and a second craniotomy with partial tumour resection was performed in September 2012. In both tumours, the KI-67 level was below 1.5%. Exome sequencing via semiconductor sequencing of patient germline DNA and somatic DNA from both tumours was performed. Tmap alignment and Platypus variant calling were performed followed by variant filtering and manual review with IGV software. We observed an increased load of missense variants in the recurrent PA tumour when compared to the original tumour. The number of detected variants increased from ten to 26 and potential clonal expansion of four variants was observed. Additionally, targeted SNP analysis revealed five rare missense SNPs with a potential impact on the function of the encoded proteins. CONCLUSIONS: In this case study, an SNP located in HRAS is the most likely candidate inducing rapid PA progression. The relapsed PA tumour had a higher variation load and fast tumour recurrence in this patient could be caused by clonal expansion of the leftover tumour tissue.


Subject(s)
Adenoma/genetics , Genetic Markers , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Pituitary Neoplasms/genetics , Polymorphism, Single Nucleotide , Adenoma/pathology , Aged , Female , Humans , Pituitary Neoplasms/pathology , Prognosis
9.
PLoS One ; 14(11): e0224835, 2019.
Article in English | MEDLINE | ID: mdl-31703101

ABSTRACT

Metformin is a commonly used antihyperglycaemic agent for the treatment of type 2 diabetes mellitus. Nevertheless, the exact mechanisms of action, underlying the various therapeutic effects of metformin, remain elusive. The goal of this study was to evaluate the alterations in longitudinal whole-blood transcriptome profiles of healthy individuals after a one-week metformin intervention in order to identify the novel molecular targets and further prompt the discovery of predictive biomarkers of metformin response. Next generation sequencing-based transcriptome analysis revealed metformin-induced differential expression of genes involved in intestinal immune network for IgA production and cytokine-cytokine receptor interaction pathways. Significantly elevated faecal sIgA levels during administration of metformin, and its correlation with the expression of genes associated with immune response (CXCR4, HLA-DQA1, MAP3K14, TNFRSF21, CCL4, ACVR1B, PF4, EPOR, CXCL8) supports a novel hypothesis of strong association between metformin and intestinal immune system, and for the first time provide evidence for altered RNA expression as a contributing mechanism of metformin's action. In addition to universal effects, 4 clusters of functionally related genes with a subject-specific differential expression were distinguished, including genes relevant to insulin production (HNF1B, HNF1A, HNF4A, GCK, INS, NEUROD1, PAX4, PDX1, ABCC8, KCNJ11) and cholesterol homeostasis (APOB, LDLR, PCSK9). This inter-individual variation of the metformin effect on the transcriptional regulation goes in line with well-known variability of the therapeutic response to the drug.


Subject(s)
Blood Cells/drug effects , Blood Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Metformin/pharmacology , Transcriptome , Adult , Biomarkers , Clinical Trials as Topic , Computational Biology/methods , Feces/chemistry , Female , Healthy Volunteers , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Molecular Sequence Annotation , Receptors, Fc , Young Adult
11.
Clin Epigenetics ; 10(1): 156, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30545422

ABSTRACT

BACKGROUND: Metformin is a widely prescribed antihyperglycemic agent that has been also associated with multiple therapeutic effects in various diseases, including several types of malignancies. There is growing evidence regarding the contribution of the epigenetic mechanisms in reaching metformin's therapeutic goals; however, the effect of metformin on human cells in vivo is not comprehensively studied. The aim of our study was to examine metformin-induced alterations of DNA methylation profiles in white blood cells of healthy volunteers, employing a longitudinal study design. RESULTS: Twelve healthy metformin-naïve individuals where enrolled in the study. Genome-wide DNA methylation pattern was estimated at baseline, 10 h and 7 days after the start of metformin administration. The whole-genome DNA methylation analysis in total revealed 125 differentially methylated CpGs, of which 11 CpGs and their associated genes with the most consistent changes in the DNA methylation profile were selected: POFUT2, CAMKK1, EML3, KIAA1614, UPF1, MUC4, LOC727982, SIX3, ADAM8, SNORD12B, VPS8, and several differentially methylated regions as novel potential epigenetic targets of metformin. The main functions of the majority of top-ranked differentially methylated loci and their representative cell signaling pathways were linked to the well-known metformin therapy targets: regulatory processes of energy homeostasis, inflammatory responses, tumorigenesis, and neurodegenerative diseases. CONCLUSIONS: Here we demonstrate for the first time the immediate effect of short-term metformin administration at therapeutic doses on epigenetic regulation in human white blood cells. These findings suggest the DNA methylation process as one of the mechanisms involved in the action of metformin, thereby revealing novel targets and directions of the molecular mechanisms underlying the various beneficial effects of metformin. TRIAL REGISTRATION: EU Clinical Trials Register, 2016-001092-74. Registered 23 March 2017, https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-001092-74/LV .


Subject(s)
Blood Cells/chemistry , DNA Methylation/drug effects , Metformin/administration & dosage , Whole Genome Sequencing/methods , Adult , Blood Cells/drug effects , CpG Islands/drug effects , Epigenesis, Genetic/drug effects , Female , Gene Regulatory Networks/drug effects , Healthy Volunteers , Humans , Longitudinal Studies , Male , Metformin/pharmacology
12.
PLoS One ; 13(9): e0204317, 2018.
Article in English | MEDLINE | ID: mdl-30261008

ABSTRACT

BACKGROUND: Metformin is a widely used first-line drug for treatment of type 2 diabetes. Despite its advantages, metformin has variable therapeutic effects, contraindications, and side effects. Here, for the very first time, we investigate the short-term effect of metformin on the composition of healthy human gut microbiota. METHODS: We used an exploratory longitudinal study design in which the first sample from an individual was the control for further samples. Eighteen healthy individuals were treated with metformin (2 × 850 mg) for 7 days. Stool samples were collected at three time points: prior to administration, 24 hours and 7 days after metformin administration. Taxonomic composition of the gut microbiome was analyzed by massive parallel sequencing of 16S rRNA gene (V3 region). RESULTS: There was a significant reduction of inner diversity of gut microbiota observed already 24 hours after metformin administration. We observed an association between the severity of gastrointestinal side effects and the increase in relative abundance of common gut opportunistic pathogen Escherichia-Shigella spp. One week long treatment with metformin was associated with a significant decrease in the families Peptostreptococcaceae and Clostridiaceae_1 and four genera within these families. CONCLUSIONS: Our results are in line with previous findings on the capability of metformin to influence gut microbiota. However, for the first time we provide evidence that metformin has an immediate effect on the gut microbiome in humans. It is likely that this effect results from the increase in abundance of opportunistic pathogens and further triggers the occurrence of side effects associated with the observed dysbiosis. An additional randomized controlled trial would be required in order to reach definitive conclusions, as this is an exploratory study without a placebo control arm. Our findings may be further used to create approaches that improve the tolerability of metformin.


Subject(s)
Bacteria/classification , Dysbiosis/chemically induced , Gastrointestinal Microbiome/drug effects , Metformin/administration & dosage , Adult , Bacteria/drug effects , Bacteria/genetics , Clostridiaceae/drug effects , Clostridiaceae/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Drug Administration Schedule , Dysbiosis/microbiology , Female , Healthy Volunteers , High-Throughput Nucleotide Sequencing , Humans , Longitudinal Studies , Male , Metformin/pharmacology , Peptostreptococcus/drug effects , Peptostreptococcus/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Young Adult
13.
J Hazard Mater ; 340: 291-299, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28719845

ABSTRACT

Ibuprofen (IBP) is ranked at the 4th place among 57 pharmaceutical compounds according to the number of citations in prioritization documents. The response of microbial community of activated sludge to IBP was studied at the concentrations of 50-5000mg/L. Batch incubation was performed in an OxiTop® device for 21days. The reduction of biological oxygen demand depended on the IBP concentration and varied in the range from 321 to 107mg O2/L. Massive DNA sequencing analysis of the activated sludge revealed that Proteobacteria became more dominant when grown in the presence of IBP. Microbial diversity was reduced in the presence of 500-1000mg/L IBP, but increased again in the presence of 5000mg/L IBP, despite the domination of Enterobacteriales (48.1%) in this sample. Incubation of activated sludge in the presence of 1000mg/L IBP led to an increased occurrence of ciprofloxacin-resistant bacteria. The use of Eosin Methylene Blue Agar for disc diffusion assay was shown to be more appropriate in order to reveal the changes in antibiotic resistance. The predominance of Enterobacteriales in the activated sludge is suggested as one of the possible explanations of the enhanced resistance to ciprofloxacin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Ciprofloxacin/pharmacology , Drug Resistance, Microbial/drug effects , Ibuprofen/pharmacology , Sewage/microbiology , Water Pollutants, Chemical/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bacteria/genetics , Bacteria/growth & development , Bacteria/metabolism , Biological Oxygen Demand Analysis , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
14.
Sci Total Environ ; 584-585: 402-413, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28126281

ABSTRACT

Municipal wastewater containing 21 pharmaceutical compounds, as well as activated sludge obtained from the aeration tank of the same wastewater treatment plant were used in lab-scale biodegradation experiments. The concentrations of pharmaceutical compounds were determined by high-performance liquid chromatography coupled to Orbitrap high-resolution mass spectrometry and ranged from 13.2ng/L to 51.8µg/L. Activated sludge was characterized in the terms of phylogenetic and catabolic diversity of microbial community, as well as its morphology. Proteobacteria (24.0%) represented the most abundant phylum, followed by Bacteroidetes (19.8%) and Firmicutes (13.2%). Bioaugmentation of wastewater with activated sludge stimulated the biodegradation process for 14 compounds. The concentration of carbamazepine in non-amended and bioaugmented WW decreased during the first 17h up to 30% and 70%, respectively. Diclofenac and ibuprofen demonstrated comparatively slow removal. The stimulating effect of the added nutrients was observed for the degradation of almost all pharmaceuticals detected in WW. The most pronounced effect of nutrients was found for erythromycin. The results were compared with those obtained for the full-scale WW treatment process.


Subject(s)
Pharmaceutical Preparations/isolation & purification , Sewage , Waste Disposal, Fluid , Water Pollutants, Chemical/isolation & purification , Bacteria/classification , Bacteria/metabolism , Phylogeny , Wastewater
15.
Eur J Endocrinol ; 175(6): 531-540, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27609360

ABSTRACT

OBJECTIVES: High variability in clinical response to metformin is often observed in type 2 diabetes (T2D) patients, and it highlights the need for identification of genetic components affecting the efficiency of metformin therapy. Aim of this observational study is to evaluate the role of tagSNPs (tagging single nucleotide polymorphisms) from genomic regions coding for six metformin transporter genes with respect to the short-term efficiency. DESIGN: 102 tagSNPs in 6 genes coding for metformin transporters were genotyped in the group of 102 T2D patients treated with metformin for 3 months. METHODS: Most significant hits were analyzed in the group of 131 T2D patients from Slovakia. Pharmacokinetic study in 25 healthy nondiabetic volunteers was conducted to investigate the effects of identified polymorphisms. RESULTS: In the discovery group of 102 patients, minor alleles of rs3119309, rs7757336 and rs2481030 were significantly nominally associated with metformin inefficiency (P = 1.9 × 10-6 to 8.1 × 10-6). Effects of rs2481030 and rs7757336 did not replicate in the group of 131 T2DM patients from Slovakia alone, whereas rs7757336 was significantly associated with a reduced metformin response in combined group. In pharmacokinetic study, group of individuals harboring risk alleles of rs7757336 and rs2481030 displayed significantly reduced AUC∞ of metformin in plasma. CONCLUSIONS: For the first time, we have identified an association between the lack of metformin response and SNPs rs3119309 and rs7757336 located in the 5' flanking region of the genes coding for Organic cation transporter 2 and rs2481030 located in the 5' flanking region of Organic cation transporter 3 that was supported by the results of a pharmacokinetic study on 25 healthy volunteers.


Subject(s)
Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Metformin/blood , Organic Cation Transport Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Diabetes Mellitus, Type 2/drug therapy , Follow-Up Studies , Humans , Hypoglycemic Agents/blood , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Middle Aged , Organic Cation Transporter 2 , Prospective Studies , Time Factors , Treatment Outcome
16.
BMC Med Genet ; 16: 86, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26415676

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) is one of the commonest monogenic disorders, predominantly inherited as an autosomal dominant trait. When untreated, it results in early coronary heart disease. The vast majority of FH remains undiagnosed in Latvia. The identification and early treatment of affected individuals remain a challenge worldwide. Most cases of FH are caused by mutations in one of four genes, APOB, LDLR, PCSK9, or LDLRAP1. The spectrum of disease-causing variants is very diverse and the variation detection panels usually used in its diagnosis cover only a minority of the disease-causing gene variants. However, DNA-based tests may provide an FH diagnosis for FH patients with no physical symptoms and with no known family history of the disease. Here, we evaluate the use of targeted next-generation sequencing (NGS) to identify cases of FH in a cohort of patients with coronary artery disease (CAD) and individuals with abnormal low-density lipoprotein-cholesterol (LDL-C) levels. METHODS: We used targeted amplification of the coding regions of LDLR, APOB, PCSK9, and LDLRAP1, followed by NGS, in 42 CAD patients (LDL-C, 4.1-7.2 mmol/L) and 50 individuals from a population-based cohort (LDL-C, 5.1-9.7 mmol/L). RESULTS: In total, 22 synonymous and 31 nonsynonymous variants, eight variants in close proximity (10 bp) to intron-exon boundaries, and 50 other variants were found. We identified four pathogenic mutations (p.(Arg3527Gln) in APOB, and p.(Gly20Arg), p.(Arg350*), and c.1706-10G > A in LDLR) in seven patients (7.6 %). Three possible pathogenic variants were also found in four patients. CONCLUSION: NGS-based methods can be used to detect FH in high-risk individuals when they do not meet the defined clinical criteria.


Subject(s)
Cholesterol, LDL/genetics , High-Throughput Nucleotide Sequencing/methods , Hyperlipoproteinemia Type II/genetics , Mutation , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Aged, 80 and over , Apolipoprotein B-100/genetics , Cohort Studies , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Female , Genetics, Population , Humans , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/diagnosis , Latvia , Male , Middle Aged , Polymorphism, Single Nucleotide , Proprotein Convertase 9 , Proprotein Convertases/genetics , Receptors, LDL/genetics , Serine Endopeptidases/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...